6.
Wang Y, Wang K, Wang X, Zhao Q, Jiang J, Jiang M
. Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. J Hazard Mater. 2023; 461:132690.
DOI: 10.1016/j.jhazmat.2023.132690.
View
7.
Leng L, Xu S, Liu R, Yu T, Zhuo X, Leng S
. Nitrogen containing functional groups of biochar: An overview. Bioresour Technol. 2019; 298:122286.
DOI: 10.1016/j.biortech.2019.122286.
View
8.
Viet Cuong D, Wu P, Chen L, Hou C
. Active MnO/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Res. 2020; 188:116495.
DOI: 10.1016/j.watres.2020.116495.
View
9.
Wang L, OConnor D, Rinklebe J, Ok Y, Tsang D, Shen Z
. Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. Environ Sci Technol. 2020; 54(23):14797-14814.
DOI: 10.1021/acs.est.0c04033.
View
10.
Lin J, Cui C, Sun S, Ma R, Yang W, Chen Y
. Synergistic optimization of syngas quality and heavy metal immobilization during continuous microwave pyrolysis of sludge: Competitive relationships, reaction mechanisms, and energy efficiency assessment. J Hazard Mater. 2022; 438:129451.
DOI: 10.1016/j.jhazmat.2022.129451.
View
11.
Lee J, Kidder M, Evans B, Paik S, Buchanan 3rd A, Garten C
. Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol. 2010; 44(20):7970-4.
DOI: 10.1021/es101337x.
View
12.
Lian F, Xing B
. Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk. Environ Sci Technol. 2017; 51(23):13517-13532.
DOI: 10.1021/acs.est.7b02528.
View
13.
Farobie O, Amrullah A, Bayu A, Syaftika N, Anis L, Hartulistiyoso E
. In-depth study of bio-oil and biochar production from macroalgae sp. slow pyrolysis. RSC Adv. 2022; 12(16):9567-9578.
PMC: 8985117.
DOI: 10.1039/d2ra00702a.
View
14.
Mishra R, Mohanty K
. A review of the next-generation biochar production from waste biomass for material applications. Sci Total Environ. 2023; 904:167171.
DOI: 10.1016/j.scitotenv.2023.167171.
View
15.
Wang K, Gao P, Geng L, Liu C, Zhang J, Shu C
. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome. 2022; 10(1):90.
PMC: 9195238.
DOI: 10.1186/s40168-022-01291-2.
View
16.
Choi Y, Choi T, Gurav R, Bhatia S, Park Y, Kim H
. Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures. Sci Total Environ. 2020; 710:136282.
DOI: 10.1016/j.scitotenv.2019.136282.
View
17.
Fan Z, Zhou X, Peng Z, Wan S, Fan Gao Z, Deng S
. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals. Chemosphere. 2023; 317:137929.
DOI: 10.1016/j.chemosphere.2023.137929.
View
18.
Hu J, Shen Y, Zhu N
. Optimizing adsorption performance of sludge-derived biochar via inherent moisture-regulated physicochemical properties. Waste Manag. 2023; 169:70-81.
DOI: 10.1016/j.wasman.2023.06.033.
View
19.
Li Y, Fu T, Geng L, Shi Y, Chu H, Liu F
. Protaetia brevitarsis larvae can efficiently convert herbaceous and ligneous plant residues to humic acids. Waste Manag. 2018; 83:79-82.
DOI: 10.1016/j.wasman.2018.11.010.
View
20.
Cantrell K, Hunt P, Uchimiya M, Novak J, Ro K
. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol. 2012; 107:419-28.
DOI: 10.1016/j.biortech.2011.11.084.
View