6.
Forli S, Huey R, Pique M, Sanner M, Goodsell D, Olson A
. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016; 11(5):905-19.
PMC: 4868550.
DOI: 10.1038/nprot.2016.051.
View
7.
Safa A, Abak A, Shoorei H, Taheri M, Ghafouri-Fard S
. MicroRNAs as regulators of ERK/MAPK pathway: A comprehensive review. Biomed Pharmacother. 2020; 132:110853.
DOI: 10.1016/j.biopha.2020.110853.
View
8.
Zhou Y, Gao L, Xia P, Zhao J, Li W, Zhou Y
. Glycyrrhetinic Acid Protects Renal Tubular Cells against Oxidative Injury via Reciprocal Regulation of JNK-Connexin 43-Thioredoxin 1 Signaling. Front Pharmacol. 2021; 12:619567.
PMC: 7884636.
DOI: 10.3389/fphar.2021.619567.
View
9.
Rahdar A, Hasanein P, Bilal M, Beyzaei H, Kyzas G
. Quercetin-loaded F127 nanomicelles: Antioxidant activity and protection against renal injury induced by gentamicin in rats. Life Sci. 2021; 276:119420.
DOI: 10.1016/j.lfs.2021.119420.
View
10.
Yang L, Yu H, Hou A, Man W, Wang S, Zhang J
. A Review of the Ethnopharmacology, Phytochemistry, Pharmacology, Application, Quality Control, Processing, Toxicology, and Pharmacokinetics of the Dried Rhizome of . Front Pharmacol. 2021; 12:727154.
PMC: 8595830.
DOI: 10.3389/fphar.2021.727154.
View
11.
Wang Q, Wang F, Li X, Ma Z, Jiang D
. Quercetin inhibits the amphiregulin/EGFR signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in obstructive nephropathy. Phytother Res. 2022; 37(1):111-123.
DOI: 10.1002/ptr.7599.
View
12.
Sharma D, Kumar Tekade R, Kalia K
. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine. 2020; 76:153235.
DOI: 10.1016/j.phymed.2020.153235.
View
13.
Bai M, Wu M, Jiang M, He J, Deng X, Xu S
. LONP1 targets HMGCS2 to protect mitochondrial function and attenuate chronic kidney disease. EMBO Mol Med. 2023; 15(2):e16581.
PMC: 9906428.
DOI: 10.15252/emmm.202216581.
View
14.
Zhao X, Kong Y, Liang B, Xu J, Lin Y, Zhou N
. Mechanosensitive Piezo1 channels mediate renal fibrosis. JCI Insight. 2022; 7(7).
PMC: 9057604.
DOI: 10.1172/jci.insight.152330.
View
15.
Ma P, Peng Y, Zhao L, Liu F, Li X
. Differential effect of polysaccharide and nonpolysaccharide components in Sijunzi decoction on spleen deficiency syndrome and their mechanisms. Phytomedicine. 2021; 93:153790.
DOI: 10.1016/j.phymed.2021.153790.
View
16.
Liu J, Liu J, Tong X, Peng W, Wei S, Sun T
. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Huai Hua San Against Ulcerative Colitis. Drug Des Devel Ther. 2021; 15:3255-3276.
PMC: 8326529.
DOI: 10.2147/DDDT.S319786.
View
17.
Tang Y, Li M, Wang J, Pan Y, Wu F
. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2014; 127:67-72.
DOI: 10.1016/j.biosystems.2014.11.005.
View
18.
Kay A, Simpson C, Stewart Jr J
. The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. J Diabetes Res. 2016; 2016:6809703.
PMC: 4980539.
DOI: 10.1155/2016/6809703.
View
19.
Tu H, Ma D, Luo Y, Tang S, Li Y, Chen G
. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered. 2021; 12(1):6538-6558.
PMC: 8806539.
DOI: 10.1080/21655979.2021.1973877.
View
20.
Shi Y, Zhou L, Zheng G, Jing Y, Zhang X, Yuan J
. Therapeutic mechanism exploration of polysaccharides from Dendrobium officinale on unilateral ureteral obstruction operation-induced renal fibrosis based on improving oxidative stress injury mediated by AhR/NOX4 pathway. Int J Biol Macromol. 2023; 253(Pt 3):126920.
DOI: 10.1016/j.ijbiomac.2023.126920.
View