Multidisciplinary Approaches to Study Anaemia with Special Mention on Aplastic Anaemia (Review)
Overview
Affiliations
Anaemia is a common health problem worldwide that disproportionately affects vulnerable groups, such as children and expectant mothers. It has a variety of underlying causes, some of which are genetic. A comprehensive strategy combining physical examination, laboratory testing (for example, a complete blood count), and molecular tools for accurate identification is required for diagnosis. With nearly 400 varieties of anaemia, accurate diagnosis remains a challenging task. Red blood cell abnormalities are largely caused by genetic factors, which means that a thorough understanding requires interpretation at the molecular level. As a result, precision medicine has become a key paradigm, utilising artificial intelligence (AI) techniques, such as deep learning and machine learning, to improve prognostic evaluation, treatment prediction, and diagnostic accuracy. Furthermore, exploring the immunomodulatory role of vitamin D along with biomarker‑based molecular techniques offers promising avenues for insight into anaemia's pathophysiology. The intricacy of aplastic anaemia makes it particularly noteworthy as a topic deserving of concentrated molecular research. Given the complexity of anaemia, an integrated strategy integrating clinical, laboratory, molecular, and AI techniques shows a great deal of promise. Such an approach holds promise for enhancing global anaemia management options in addition to advancing our understanding of the illness.
Qi Y, Liu X, Ding Z, Yu Y, Zhuang Z BMC Med Inform Decis Mak. 2024; 24(1):379.
PMID: 39695587 PMC: 11654282. DOI: 10.1186/s12911-024-02781-z.