» Articles » PMID: 39206252

Systematic Investigation of the Impact of Screw Elements in Continuous Wet Granulation

Overview
Journal Int J Pharm X
Specialty Pharmacology
Date 2024 Aug 29
PMID 39206252
Authors
Affiliations
Soon will be listed here.
Abstract

Twin-screw wet granulation (TSG) is a continuous manufacturing technique either for granules as final dosage form or as an intermediate before tableting or capsule filling. A comprehensive process understanding is required to implement TSG, considering various parameters influencing granule and tablet quality. This study investigates the impact of screw configuration on granule properties followed by tableting, using a systematic approach for lactose-microcrystalline cellulose (lactose-MCC) and ibuprofen-mannitol (IBU) formulations. The most affecting factor, as observed by other researchers, was the L/S ratio impacting the granule size, strength and tabletability. Introducing tooth-mixing-elements at the end of the screw, as for the IBU formulation, resulted in a high proportion of oversized granules, with values between 36% and 78%. Increasing the thickness of kneading elements (KEs) produced denser, less friable granules with reduced tablet tensile strength. Granulation with more KEs, larger thickness or stagger angle increased torque values and residence time from 30 to 65 s. Generally, IBU granules exhibited high tabletability, requiring low compression pressure for sufficient tensile strength. At a compression pressure of 50 MPa, IBU tablets where at least one kneading zone was included resulted in approximately 2.5 MPa compared to lactose-MCC with 0.5 MPa. In conclusion, the TSG process demonstrated robustness by varying the screw design with minimal impact on subsequent tableting processes.

References
1.
Rahimi S, Paul S, Sun C, Zhang F . The role of the screw profile on granular structure and mixing efficiency of a high-dose hydrophobic drug formulation during twin screw wet granulation. Int J Pharm. 2019; 575:118958. DOI: 10.1016/j.ijpharm.2019.118958. View

2.
Ito A, Kleinebudde P . Influence of granulation temperature on particle size distribution of granules in twin-screw granulation (TSG). Pharm Dev Technol. 2019; 24(7):874-882. DOI: 10.1080/10837450.2019.1615089. View

3.
Schmidt A, de Waard H, Moll K, Krumme M, Kleinebudde P . Quantitative Assessment of Mass Flow Boundaries in Continuous Twin-screw Granulation. Chimia (Aarau). 2016; 70(9):604-9. DOI: 10.2533/chimia.2016.604. View

4.
Peeters M, Barrera Jimenez A, Matsunami K, Stauffer F, Nopens I, Beer T . Evaluation of the influence of material properties and process parameters on granule porosity in twin-screw wet granulation. Int J Pharm. 2023; 641:123010. DOI: 10.1016/j.ijpharm.2023.123010. View

5.
Vanhoorne V, Vanbillemont B, Vercruysse J, De Leersnyder F, Gomes P, De Beer T . Development of a controlled release formulation by continuous twin screw granulation: Influence of process and formulation parameters. Int J Pharm. 2016; 505(1-2):61-8. DOI: 10.1016/j.ijpharm.2016.03.058. View