6.
Hang Y, Wang A, Wu N
. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem Soc Rev. 2024; 53(6):2932-2971.
PMC: 11849058.
DOI: 10.1039/d3cs00793f.
View
7.
Li G, Qi X, Wu J, Xu L, Wan X, Liu Y
. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J Hazard Mater. 2022; 436:129107.
DOI: 10.1016/j.jhazmat.2022.129107.
View
8.
Bai H, Wang C, Chen J, Peng J, Cao Q
. A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens Bioelectron. 2014; 64:352-8.
DOI: 10.1016/j.bios.2014.09.034.
View
9.
Akgonullu S, Yavuz H, Denizli A
. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta. 2020; 219:121219.
DOI: 10.1016/j.talanta.2020.121219.
View
10.
Hani O, Garcia-Guzman J, Palacios-Santander J, Digua K, Amine A, Cubillana-Aguilera L
. Development of a molecularly imprinted membrane for selective, high-sensitive, and on-site detection of antibiotics in waters and drugs: Application for sulfamethoxazole. Chemosphere. 2023; 350:141039.
DOI: 10.1016/j.chemosphere.2023.141039.
View
11.
Giwa A, Dindi A, Kujawa J
. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. J Hazard Mater. 2018; 370:172-195.
DOI: 10.1016/j.jhazmat.2018.06.025.
View
12.
Blanco-Lopez M, Lobo-Castanon M, Miranda-Ordieres A, Tunon-Blanco P
. Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes. Biosens Bioelectron. 2003; 18(4):353-62.
DOI: 10.1016/s0956-5663(02)00151-3.
View
13.
DiMaio J, Doran T, Ryan D, Raymond D, Nilsson B
. Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition. Biomacromolecules. 2017; 18(11):3591-3599.
DOI: 10.1021/acs.biomac.7b00925.
View
14.
Kuo Y, Lee C, Lin C
. Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes. Biosens Bioelectron. 2018; 103:130-137.
DOI: 10.1016/j.bios.2017.11.065.
View
15.
Zheng C, Ling Y, Chen J, Yuan X, Li S, Zhang Z
. Design of a versatile and selective electrochemical sensor based on dummy molecularly imprinted PEDOT/laser-induced graphene for nitroaromatic explosives detection. Environ Res. 2023; 236(Pt 2):116769.
DOI: 10.1016/j.envres.2023.116769.
View
16.
Shaabani N, Chan N, Jemere A
. A Molecularly Imprinted Sol-Gel Electrochemical Sensor for Naloxone Determination. Nanomaterials (Basel). 2021; 11(3).
PMC: 8001154.
DOI: 10.3390/nano11030631.
View
17.
Adel M, Allam A, Sayour A, Ragai H, Umezu S, Fath El-Bab A
. Design and development of a portable low-cost QCM-based system for liquid biosensing. Biomed Microdevices. 2024; 26(1):11.
PMC: 10796497.
DOI: 10.1007/s10544-024-00696-0.
View
18.
Majak D, Fan J, Kang S, Gupta M
. Delta-9-tetrahydrocannabinol (Δ-THC) sensing using an aerosol jet printed organic electrochemical transistor (OECT). J Mater Chem B. 2021; 9(8):2107-2117.
DOI: 10.1039/d0tb02951c.
View
19.
Arabi M, Ostovan A, Zhang Z, Wang Y, Mei R, Fu L
. Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: Toward ultrasensitivity and universality. Biosens Bioelectron. 2020; 174:112825.
DOI: 10.1016/j.bios.2020.112825.
View
20.
Torrini F, Goletta G, Palladino P, Scarano S, Minunni M
. A LysLysLys-tag as trigger in polynorepinephrine epitope imprinting: The case study of soluble PD-L1 detection in serum by optical-based sensing. Biosens Bioelectron. 2022; 220:114806.
DOI: 10.1016/j.bios.2022.114806.
View