6.
Dong J, Uemura T, Shirasaki Y, Tateishi T
. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials. 2002; 23(23):4493-502.
DOI: 10.1016/s0142-9612(02)00193-x.
View
7.
Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G
. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 2019; 106:110289.
DOI: 10.1016/j.msec.2019.110289.
View
8.
Samourides A, Browning L, Hearnden V, Chen B
. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Mater Sci Eng C Mater Biol Appl. 2020; 108:110384.
DOI: 10.1016/j.msec.2019.110384.
View
9.
Chen W, Liang Y, Hou X, Zhang J, Ding H, Sun S
. Mechanical Grinding Preparation and Characterization of TiO₂-Coated Wollastonite Composite Pigments. Materials (Basel). 2018; 11(4).
PMC: 5951477.
DOI: 10.3390/ma11040593.
View
10.
Wang J, You M, Ding Z, Ye W
. A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Mater Sci Eng C Mater Biol Appl. 2019; 97:1021-1035.
DOI: 10.1016/j.msec.2019.01.057.
View
11.
Zakaria M, Sulong A, Muhamad N, Raza M, Ramli M
. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: An overview. Mater Sci Eng C Mater Biol Appl. 2019; 97:884-895.
DOI: 10.1016/j.msec.2018.12.056.
View
12.
Hammami I, Graca M, Gavinho S, Jakka S, Borges J, Silva J
. Exploring the Impact of Copper Oxide Substitution on Structure, Morphology, Bioactivity, and Electrical Properties of 45S5 Bioglass. Biomimetics (Basel). 2024; 9(4).
PMC: 11048336.
DOI: 10.3390/biomimetics9040213.
View
13.
Matumba K, Motloung M, Ojijo V, Sinha Ray S, Sadiku E
. Investigation of the Effects of Chain Extender on Material Properties of PLA/PCL and PLA/PEG Blends: Comparative Study between Polycaprolactone and Polyethylene Glycol. Polymers (Basel). 2023; 15(9).
PMC: 10181129.
DOI: 10.3390/polym15092230.
View
14.
Pudelko-Prazuch I, Balasubramanian M, Ganesan S, Marecik S, Walczak K, Pielichowska K
. Characterization and In Vitro Evaluation of Porous Polymer-Blended Scaffolds Functionalized with Tricalcium Phosphate. J Funct Biomater. 2024; 15(3).
PMC: 10970789.
DOI: 10.3390/jfb15030057.
View
15.
Cao C, Huang P, Prasopthum A, Parsons A, Ai F, Yang J
. Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations. Biomater Sci. 2021; 10(1):138-152.
DOI: 10.1039/d1bm01645h.
View
16.
Kozaniti F, Deligianni D, Georgiou M, Portan D
. The Role of Substrate Topography and Stiffness on MSC Cells Functions: Key Material Properties for Biomimetic Bone Tissue Engineering. Biomimetics (Basel). 2022; 7(1).
PMC: 8788532.
DOI: 10.3390/biomimetics7010007.
View
17.
Cai Z, Wan Y, Becker M, Long Y, Dean D
. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials. 2019; 208:45-71.
DOI: 10.1016/j.biomaterials.2019.03.038.
View
18.
Li Y, Yang C, Zhao H, Qu S, Li X, Li Y
. New Developments of Ti-Based Alloys for Biomedical Applications. Materials (Basel). 2017; 7(3):1709-1800.
PMC: 5453259.
DOI: 10.3390/ma7031709.
View
19.
Ji T, Feng B, Shen J, Zhang M, Hu Y, Jiang A
. An Avascular Niche Created by Axitinib-Loaded PCL/Collagen Nanofibrous Membrane Stabilized Subcutaneous Chondrogenesis of Mesenchymal Stromal Cells. Adv Sci (Weinh). 2021; 8(20):e2100351.
PMC: 8529489.
DOI: 10.1002/advs.202100351.
View
20.
Lozano-Sanchez L, Bagudanch I, Sustaita A, Iturbe-Ek J, Elizalde L, Garcia-Romeu M
. Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties. Polymers (Basel). 2019; 10(4).
PMC: 6415463.
DOI: 10.3390/polym10040391.
View