» Articles » PMID: 39202397

A Comprehensive Review of Bioinformatics Tools for Genomic Biomarker Discovery Driving Precision Oncology

Overview
Journal Genes (Basel)
Publisher MDPI
Date 2024 Aug 29
PMID 39202397
Authors
Affiliations
Soon will be listed here.
Abstract

The rapid advancement of high-throughput technologies, particularly next-generation sequencing (NGS), has revolutionized cancer research by enabling the investigation of genetic variations such as SNPs, copy number variations, gene expression, and protein levels. These technologies have elevated the significance of precision oncology, creating a demand for biomarker identification and validation. This review explores the complex interplay of oncology, cancer biology, and bioinformatics tools, highlighting the challenges in statistical learning, experimental validation, data processing, and quality control that underpin this transformative field. This review outlines the methodologies and applications of bioinformatics tools in cancer genomics research, encompassing tools for data structuring, pathway analysis, network analysis, tools for analyzing biomarker signatures, somatic variant interpretation, genomic data analysis, and visualization tools. Open-source tools and repositories like The Cancer Genome Atlas (TCGA), Genomic Data Commons (GDC), cBioPortal, UCSC Genome Browser, Array Express, and Gene Expression Omnibus (GEO) have emerged to streamline cancer omics data analysis. Bioinformatics has significantly impacted cancer research, uncovering novel biomarkers, driver mutations, oncogenic pathways, and therapeutic targets. Integrating multi-omics data, network analysis, and advanced ML will be pivotal in future biomarker discovery and patient prognosis prediction.

Citing Articles

Advancements in proteogenomics for preclinical targeted cancer therapy research.

Suo Y, Song Y, Wang Y, Liu Q, Rodriguez H, Zhou H Biophys Rep. 2025; 11(1):56-76.

PMID: 40070661 PMC: 11891078. DOI: 10.52601/bpr.2024.240053.


RCE-IFE: recursive cluster elimination with intra-cluster feature elimination.

Kuzudisli C, Bakir-Gungor B, Qaqish B, Yousef M PeerJ Comput Sci. 2025; 11:e2528.

PMID: 40062294 PMC: 11888879. DOI: 10.7717/peerj-cs.2528.


A computational framework for extracting biological insights from SRA cancer data.

Guimaraes P, Carvalho M, Ruiz J Sci Rep. 2025; 15(1):8117.

PMID: 40057525 PMC: 11890766. DOI: 10.1038/s41598-025-91781-8.


Integrating traditional machine learning with qPCR validation to identify solid drug targets in pancreatic cancer: a 5-gene signature study.

Wang X, Yu P, Jia W, Wan B, Ling Z, Tang Y Front Pharmacol. 2025; 15():1539120.

PMID: 39850570 PMC: 11754184. DOI: 10.3389/fphar.2024.1539120.


RNA nanotherapeutics for hepatocellular carcinoma treatment.

Yuan Y, Sun W, Xie J, Zhang Z, Luo J, Han X Theranostics. 2025; 15(3):965-992.

PMID: 39776807 PMC: 11700867. DOI: 10.7150/thno.102964.

References
1.
Miller A, Tucker C . Encryption and the loss of patient data. J Policy Anal Manage. 2011; 30(3):534-56. DOI: 10.1002/pam.20590. View

2.
Balhoff J, Carbon S, Ebert D, Gaudet P, Harris N, Mi H . The Gene Ontology knowledgebase in 2023. Genetics. 2023; 224(1). PMC: 10158837. DOI: 10.1093/genetics/iyad031. View

3.
Shen S, Park J, Lu Z, Lin L, Henry M, Wu Y . rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014; 111(51):E5593-601. PMC: 4280593. DOI: 10.1073/pnas.1419161111. View

4.
Heather J, Chain B . The sequence of sequencers: The history of sequencing DNA. Genomics. 2015; 107(1):1-8. PMC: 4727787. DOI: 10.1016/j.ygeno.2015.11.003. View

5.
Nakagawa H, Wardell C, Furuta M, Taniguchi H, Fujimoto A . Cancer whole-genome sequencing: present and future. Oncogene. 2015; 34(49):5943-50. DOI: 10.1038/onc.2015.90. View