6.
Jiao Y, Nigam D, Barry K, Daum C, Yoshinaga Y, Lipzen A
. A large sequenced mutant library - valuable reverse genetic resource that covers 98% of sorghum genes. Plant J. 2023; 117(5):1543-1557.
DOI: 10.1111/tpj.16582.
View
7.
Mallick R, Pramanik S, Pandit M, Gupta A, Roy S, Jambhulkar S
. Radiosensitivity of seedling traits to varying gamma doses, optimum dose determination and variation in determined doses due to different time of sowings after irradiation and methods of irradiation in faba bean genotypes. Int J Radiat Biol. 2022; 99(3):534-550.
DOI: 10.1080/09553002.2022.2107723.
View
8.
Xiong H, Guo H, Fu M, Xie Y, Zhao L, Gu J
. A large-scale whole-exome sequencing mutant resource for functional genomics in wheat. Plant Biotechnol J. 2023; 21(10):2047-2056.
PMC: 10502753.
DOI: 10.1111/pbi.14111.
View
9.
Hagiwara Y, Oike T, Niimi A, Yamauchi M, Sato H, Limsirichaikul S
. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. J Radiat Res. 2018; 60(1):69-79.
PMC: 6373698.
DOI: 10.1093/jrr/rry096.
View
10.
Bollam S, Romana K, Rayaprolu L, Vemula A, Das R, Rathore A
. Nitrogen Use Efficiency in Sorghum: Exploring Native Variability for Traits Under Variable N-Regimes. Front Plant Sci. 2021; 12:643192.
PMC: 8097177.
DOI: 10.3389/fpls.2021.643192.
View
11.
Sikora P, Chawade A, Larsson M, Olsson J, Olsson O
. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics. 2012; 2011:314829.
PMC: 3270407.
DOI: 10.1155/2011/314829.
View
12.
Chen Y, Chen R
. Physical Mutagenesis in Medicago truncatula Using Fast Neutron Bombardment (FNB) for Symbiosis and Developmental Biology Studies. Methods Mol Biol. 2018; 1822:61-69.
DOI: 10.1007/978-1-4939-8633-0_4.
View
13.
Wang J, Sui J, Xie Y, Guo H, Qiao L, Zhao L
. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture. J Radiat Res. 2015; 56(3):437-45.
PMC: 4426915.
DOI: 10.1093/jrr/rru121.
View
14.
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z
. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017; 45(W1):W122-W129.
PMC: 5793732.
DOI: 10.1093/nar/gkx382.
View
15.
Jiao Y, Burke J, Chopra R, Burow G, Chen J, Wang B
. A Sorghum Mutant Resource as an Efficient Platform for Gene Discovery in Grasses. Plant Cell. 2016; 28(7):1551-62.
PMC: 4981137.
DOI: 10.1105/tpc.16.00373.
View
16.
Monroe J, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M
. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature. 2022; 602(7895):101-105.
PMC: 8810380.
DOI: 10.1038/s41586-021-04269-6.
View
17.
Naito K, Kusaba M, Shikazono N, Takano T, Tanaka A, Tanisaka T
. Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with gamma-rays and carbon ions. Genetics. 2004; 169(2):881-9.
PMC: 1449103.
DOI: 10.1534/genetics.104.033654.
View
18.
Sega G
. A review of the genetic effects of ethyl methanesulfonate. Mutat Res. 1984; 134(2-3):113-42.
DOI: 10.1016/0165-1110(84)90007-1.
View
19.
Kumawat S, Rana N, Bansal R, Vishwakarma G, Mehetre S, Das B
. Expanding Avenue of Fast Neutron Mediated Mutagenesis for Crop Improvement. Plants (Basel). 2019; 8(6).
PMC: 6631465.
DOI: 10.3390/plants8060164.
View
20.
Weng M, Becker C, Hildebrandt J, Neumann M, Rutter M, Shaw R
. Fine-Grained Analysis of Spontaneous Mutation Spectrum and Frequency in . Genetics. 2018; 211(2):703-714.
PMC: 6366913.
DOI: 10.1534/genetics.118.301721.
View