6.
Herrmann J, Feng Y, Gassenmaier S, Grunz J, Koerzdoerfer G, Lingg A
. Fast 5-minute shoulder MRI protocol with accelerated TSE-sequences and deep learning image reconstruction for the assessment of shoulder pain at 1.5 and 3 Tesla. Eur J Radiol Open. 2024; 12:100557.
PMC: 10943294.
DOI: 10.1016/j.ejro.2024.100557.
View
7.
Zhang L, Tang M, Min Z, Lu J, Lei X, Zhang X
. Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis. Acta Radiol. 2015; 57(6):651-60.
DOI: 10.1177/0284185115597265.
View
8.
van der Molen A, Quattrocchi C, Mallio C, Dekkers I
. Ten years of gadolinium retention and deposition: ESMRMB-GREC looks backward and forward. Eur Radiol. 2023; 34(1):600-611.
PMC: 10791848.
DOI: 10.1007/s00330-023-10281-3.
View
9.
Wessling D, Gassenmaier S, Olthof S, Benkert T, Weiland E, Afat S
. Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI. Eur J Radiol. 2023; 166:110948.
DOI: 10.1016/j.ejrad.2023.110948.
View
10.
Sauer S, Christner S, Lois A, Woznicki P, Curtaz C, Kunz A
. Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI. J Magn Reson Imaging. 2023; 60(3):1190-1200.
DOI: 10.1002/jmri.29139.
View
11.
Partridge S, Nissan N, Rahbar H, Kitsch A, Sigmund E
. Diffusion-weighted breast MRI: Clinical applications and emerging techniques. J Magn Reson Imaging. 2016; 45(2):337-355.
PMC: 5222835.
DOI: 10.1002/jmri.25479.
View
12.
Mann R, Balleyguier C, Baltzer P, Bick U, Colin C, Cornford E
. Breast MRI: EUSOBI recommendations for women's information. Eur Radiol. 2015; 25(12):3669-78.
PMC: 4636525.
DOI: 10.1007/s00330-015-3807-z.
View
13.
Sheikh A, Hussain S, Ghori Q, Naeem N, Fazil A, Giri S
. The spectrum of genetic mutations in breast cancer. Asian Pac J Cancer Prev. 2015; 16(6):2177-85.
DOI: 10.7314/apjcp.2015.16.6.2177.
View
14.
Tao W, Pan Z, Wu G, Tao Q
. The Strength of Nesterov's Extrapolation in the Individual Convergence of Nonsmooth Optimization. IEEE Trans Neural Netw Learn Syst. 2019; 31(7):2557-2568.
DOI: 10.1109/TNNLS.2019.2933452.
View
15.
Kuhl C, Schrading S, Strobel K, Schild H, Hilgers R, Bieling H
. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J Clin Oncol. 2014; 32(22):2304-10.
DOI: 10.1200/JCO.2013.52.5386.
View
16.
Hammernik K, Klatzer T, Kobler E, Recht M, Sodickson D, Pock T
. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2017; 79(6):3055-3071.
PMC: 5902683.
DOI: 10.1002/mrm.26977.
View
17.
Wekking D, Porcu M, De Silva P, Saba L, Scartozzi M, Solinas C
. Breast MRI: Clinical Indications, Recommendations, and Future Applications in Breast Cancer Diagnosis. Curr Oncol Rep. 2023; 25(4):257-267.
DOI: 10.1007/s11912-023-01372-x.
View
18.
Chaika M, Afat S, Wessling D, Afat C, Nickel D, Kannengiesser S
. Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time. Diagn Interv Imaging. 2022; 104(2):53-59.
DOI: 10.1016/j.diii.2022.06.006.
View
19.
Kiryu S, Akai H, Yasaka K, Tajima T, Kunimatsu A, Yoshioka N
. Clinical Impact of Deep Learning Reconstruction in MRI. Radiographics. 2023; 43(6):e220133.
DOI: 10.1148/rg.220133.
View
20.
Song S, Woo O, Cho K, Seo B, Son Y, Grimm R
. Simultaneous Multislice Readout-Segmented Echo Planar Imaging for Diffusion-Weighted MRI in Patients With Invasive Breast Cancers. J Magn Reson Imaging. 2020; 53(4):1108-1115.
DOI: 10.1002/jmri.27433.
View