6.
de Araujo Delmondes G, Bezerra D, Dias D, de Souza Borges A, Araujo I, da Cunha G
. Toxicological and pharmacologic effects of farnesol (CHO): A descriptive systematic review. Food Chem Toxicol. 2019; 129:169-200.
DOI: 10.1016/j.fct.2019.04.037.
View
7.
Loyola-Cruz M, Gonzalez-Avila L, Martinez-Trejo A, Saldana-Padilla A, Hernandez-Cortez C, Bello-Lopez J
. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens. 2023; 12(5).
PMC: 10222376.
DOI: 10.3390/pathogens12050743.
View
8.
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet D
. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2017; 18(3):318-327.
DOI: 10.1016/S1473-3099(17)30753-3.
View
9.
Herigstad B, Hamilton M, Heersink J
. How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods. 2001; 44(2):121-9.
DOI: 10.1016/s0167-7012(00)00241-4.
View
10.
Pammi M, Liang R, Hicks J, Barrish J, Versalovic J
. Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res. 2011; 70(6):578-83.
PMC: 3210893.
DOI: 10.1203/PDR.0b013e318232a984.
View
11.
Rice L
. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008; 197(8):1079-81.
DOI: 10.1086/533452.
View
12.
Costerton J, Stewart P, Greenberg E
. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418):1318-22.
DOI: 10.1126/science.284.5418.1318.
View
13.
Chmielewska S, Sklodowski K, Piktel E, Suprewicz L, Fiedoruk K, Daniluk T
. NDM-1 Carbapenemase-Producing Enterobacteriaceae are Highly Susceptible to Ceragenins CSA-13, CSA-44, and CSA-131. Infect Drug Resist. 2020; 13:3277-3294.
PMC: 7535143.
DOI: 10.2147/IDR.S261579.
View
14.
Moellering Jr R
. NDM-1--a cause for worldwide concern. N Engl J Med. 2010; 363(25):2377-9.
DOI: 10.1056/NEJMp1011715.
View
15.
Kuroda M, Nagasaki S, Ohta T
. Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2007; 59(3):425-32.
DOI: 10.1093/jac/dkl519.
View
16.
Aloke C, Achilonu I
. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microb Pathog. 2022; 175:105963.
DOI: 10.1016/j.micpath.2022.105963.
View
17.
Santajit S, Indrawattana N
. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res Int. 2016; 2016:2475067.
PMC: 4871955.
DOI: 10.1155/2016/2475067.
View
18.
Lapczynski A, Bhatia S, Letizia C, Api A
. Fragrance material review on farnesol. Food Chem Toxicol. 2008; 46 Suppl 11:S149-56.
DOI: 10.1016/j.fct.2008.06.046.
View
19.
Jamal M, Andleeb S, Jalil F, Imran M, Nawaz M, Hussain T
. Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae. Folia Microbiol (Praha). 2018; 64(1):101-111.
DOI: 10.1007/s12223-018-0636-x.
View
20.
Almaaytah A, Farajallah A, Abualhaijaa A, Al-Balas Q
. A3, a Scorpion Venom Derived Peptide Analogue with Potent Antimicrobial and Potential Antibiofilm Activity against Clinical Isolates of Multi-Drug Resistant Gram Positive Bacteria. Molecules. 2018; 23(7).
PMC: 6100099.
DOI: 10.3390/molecules23071603.
View