6.
Chen H, Tzeng S, Hsiao Y, Chen R, Hung E, Lee O
. Smartphone-Based Artificial Intelligence-Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study. JMIR Mhealth Uhealth. 2021; 9(10):e32444.
PMC: 8538024.
DOI: 10.2196/32444.
View
7.
Byrne S, Reynolds A, Biliotti C, Bargagli-Stoffi F, Polonio L, Riccaboni M
. Predicting choice behaviour in economic games using gaze data encoded as scanpath images. Sci Rep. 2023; 13(1):4722.
PMC: 10036613.
DOI: 10.1038/s41598-023-31536-5.
View
8.
Gheorghe C, Purcarea V, Gheorghe I
. Using eye-tracking technology in Neuromarketing. Rom J Ophthalmol. 2023; 67(1):2-6.
PMC: 10117197.
DOI: 10.22336/rjo.2023.2.
View
9.
Wu A, Taneja H, Boyd D, Donato P, Hindman M, Napoli P
. Computational social science: On measurement. Science. 2020; 370(6521):1174-1175.
DOI: 10.1126/science.abe8308.
View
10.
Vehlen A, Spenthof I, Tonsing D, Heinrichs M, Domes G
. Evaluation of an eye tracking setup for studying visual attention in face-to-face conversations. Sci Rep. 2021; 11(1):2661.
PMC: 7846602.
DOI: 10.1038/s41598-021-81987-x.
View
11.
Moe-Byrne T, Knapp P, Perry D, Achten J, Spoors L, Appelbe D
. Does digital, multimedia information increase recruitment and retention in a children's wrist fracture treatment trial, and what do people think of it? A randomised controlled Study Within A Trial (SWAT). BMJ Open. 2022; 12(7):e057508.
PMC: 9280884.
DOI: 10.1136/bmjopen-2021-057508.
View
12.
Brunye T, Drew T, Weaver D, Elmore J
. A review of eye tracking for understanding and improving diagnostic interpretation. Cogn Res Princ Implic. 2019; 4(1):7.
PMC: 6515770.
DOI: 10.1186/s41235-019-0159-2.
View
13.
Mehmood A, Taber N, Bachani A, Gupta S, Paichadze N, Hyder A
. Paper Versus Digital Data Collection for Road Safety Risk Factors: Reliability Comparative Analysis From Three Cities in Low- and Middle-Income Countries. J Med Internet Res. 2019; 21(5):e13222.
PMC: 6658257.
DOI: 10.2196/13222.
View
14.
Garett R, Chiu J, Zhang L, Young S
. A Literature Review: Website Design and User Engagement. Online J Commun Media Technol. 2016; 6(3):1-14.
PMC: 4974011.
View
15.
Ahn H, Jun I, Seo K, Kim E, Kim T
. Artificial Intelligence for the Estimation of Visual Acuity Using Multi-Source Anterior Segment Optical Coherence Tomographic Images in Senile Cataract. Front Med (Lausanne). 2022; 9:871382.
PMC: 9152093.
DOI: 10.3389/fmed.2022.871382.
View
16.
Zdarsky N, Treue S, Esghaei M
. A Deep Learning-Based Approach to Video-Based Eye Tracking for Human Psychophysics. Front Hum Neurosci. 2021; 15:685830.
PMC: 8333872.
DOI: 10.3389/fnhum.2021.685830.
View
17.
Kar A
. MLGaze: Machine Learning-Based Analysis of Gaze Error Patterns in Consumer Eye Tracking Systems. Vision (Basel). 2020; 4(2).
PMC: 7355841.
DOI: 10.3390/vision4020025.
View
18.
Aily J, Copson J, Voinier D, Jakiela J, Hinman R, Grosch M
. Understanding Recruitment Yield From Social Media Advertisements and Associated Costs of a Telehealth Randomized Controlled Trial: Descriptive Study. J Med Internet Res. 2023; 25:e41358.
PMC: 10236273.
DOI: 10.2196/41358.
View
19.
Houpt J, Frame M, Blaha L
. Unsupervised parsing of gaze data with a beta-process vector auto-regressive hidden Markov model. Behav Res Methods. 2017; 50(5):2074-2096.
DOI: 10.3758/s13428-017-0974-7.
View
20.
Chen L, Jeong J, Simpkins B, Ferrara E
. Exploring the Behavior of Users With Attention-Deficit/Hyperactivity Disorder on Twitter: Comparative Analysis of Tweet Content and User Interactions. J Med Internet Res. 2023; 25:e43439.
PMC: 10233432.
DOI: 10.2196/43439.
View