6.
Fullner K, Nester E
. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol. 1996; 178(6):1498-504.
PMC: 177831.
DOI: 10.1128/jb.178.6.1498-1504.1996.
View
7.
Geng Z, Zhu W, Su H, Zhao Y, Zhang K, Yang J
. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Biotechnol Adv. 2014; 32(2):390-402.
DOI: 10.1016/j.biotechadv.2013.12.007.
View
8.
Hallen H, Watling R, Adams G
. Taxonomy and toxicity of Conocybe lactea and related species. Mycol Res. 2003; 107(Pt 8):969-79.
DOI: 10.1017/s0953756203008190.
View
9.
Hu Y, Dai Q, Liu Y, Yang Z, Song N, Gao X
. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali. Curr Microbiol. 2014; 68(6):769-76.
DOI: 10.1007/s00284-014-0541-8.
View
10.
Hussain H, Aqib A, Seleem M, Shabbir M, Hao H, Iqbal Z
. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb Pathog. 2021; 158:105040.
PMC: 8445154.
DOI: 10.1016/j.micpath.2021.105040.
View
11.
Islam M, Nizam S, Verma P
. A highly efficient Agrobacterium mediated transformation system for chickpea wilt pathogen Fusarium oxysporum f. sp. ciceri using DsRed-Express to follow root colonisation. Microbiol Res. 2012; 167(6):332-8.
DOI: 10.1016/j.micres.2012.02.001.
View
12.
Jiang D, Zhu W, Wang Y, Sun C, Zhang K, Yang J
. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv. 2013; 31(8):1562-74.
DOI: 10.1016/j.biotechadv.2013.08.005.
View
13.
Kange A, Xia A, Si J, Li B, Zhang X, Ai G
. The Fungal-Specific Transcription Factor VpFSTF1 Is Required for Virulence in . Front Microbiol. 2020; 10:2945.
PMC: 6965324.
DOI: 10.3389/fmicb.2019.02945.
View
14.
Levy N, Bruneau J, Le Rouzic E, Bonnard D, Le Strat F, Caravano A
. Structural Basis for E. coli Penicillin Binding Protein (PBP) 2 Inhibition, a Platform for Drug Design. J Med Chem. 2019; 62(9):4742-4754.
DOI: 10.1021/acs.jmedchem.9b00338.
View
15.
Li D, Tang Y, Lin J, Cai W
. Methods for genetic transformation of filamentous fungi. Microb Cell Fact. 2017; 16(1):168.
PMC: 5627406.
DOI: 10.1186/s12934-017-0785-7.
View
16.
Lu S, Lyngholm L, Yang G, Bronson C, Yoder O, Turgeon B
. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci U S A. 1994; 91(26):12649-53.
PMC: 45496.
DOI: 10.1073/pnas.91.26.12649.
View
17.
Michielse C, Hooykaas P, Van Den Hondel C, Ram A
. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet. 2005; 48(1):1-17.
DOI: 10.1007/s00294-005-0578-0.
View
18.
Michielse C, Hooykaas P, Van Den Hondel C, Ram A
. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc. 2008; 3(10):1671-8.
DOI: 10.1038/nprot.2008.154.
View
19.
Mirabito P, Adams T, Timberlake W
. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell. 1989; 57(5):859-68.
DOI: 10.1016/0092-8674(89)90800-3.
View
20.
Nguyen K, Ho Q, Do L, Mai L, Pham D, Tran H
. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation. World J Microbiol Biotechnol. 2017; 33(6):107.
DOI: 10.1007/s11274-017-2275-9.
View