6.
Wang J, Han L, Liu Z, Zhang W, Zhang L, Jing J
. Genus unclassified_Muribaculaceae and microbiota-derived butyrate and indole-3-propionic acid are involved in benzene-induced hematopoietic injury in mice. Chemosphere. 2022; 313:137499.
DOI: 10.1016/j.chemosphere.2022.137499.
View
7.
Fan Y, Pedersen O
. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020; 19(1):55-71.
DOI: 10.1038/s41579-020-0433-9.
View
8.
Ran Q, Gan Q, Zhu Y, Song L, Shen L, Duan X
. Mechanism insights into the pleiotropic effects of nobiletin as a potential therapeutic agent on non-alcoholic fatty liver disease (NAFLD). Biomed Pharmacother. 2024; 173:116322.
DOI: 10.1016/j.biopha.2024.116322.
View
9.
Ekstedt M, Franzen L, Mathiesen U, Thorelius L, Holmqvist M, Bodemar G
. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006; 44(4):865-73.
DOI: 10.1002/hep.21327.
View
10.
Paone P, Suriano F, Jian C, Korpela K, Delzenne N, Van Hul M
. Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes. 2022; 14(1):2152307.
PMC: 9715274.
DOI: 10.1080/19490976.2022.2152307.
View
11.
Rao A, Kosters A, Mells J, Zhang W, Setchell K, Amanso A
. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med. 2016; 8(357):357ra122.
PMC: 5056562.
DOI: 10.1126/scitranslmed.aaf4823.
View
12.
Li H, Xi Y, Xin X, Tian H, Hu Y
. Salidroside improves high-fat diet-induced non-alcoholic steatohepatitis by regulating the gut microbiota-bile acid-farnesoid X receptor axis. Biomed Pharmacother. 2020; 124:109915.
DOI: 10.1016/j.biopha.2020.109915.
View
13.
Jiao N, Baker S, Chapa-Rodriguez A, Liu W, Nugent C, Tsompana M
. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut. 2017; 67(10):1881-1891.
DOI: 10.1136/gutjnl-2017-314307.
View
14.
Wang R, Fan X, Lu Y, Chen D, Zhao Y, Qi K
. Dietary acetic acid suppress high-fat diet-induced obesity in mice by altering taurine conjugated bile acids metabolism. Curr Res Food Sci. 2022; 5:1976-1984.
PMC: 9596597.
DOI: 10.1016/j.crfs.2022.10.021.
View
15.
Cremonini E, Wang Z, Bettaieb A, Adamo A, Daveri E, Mills D
. (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance. Redox Biol. 2017; 14:588-599.
PMC: 5691220.
DOI: 10.1016/j.redox.2017.11.002.
View
16.
Grander C, Grabherr F, Spadoni I, Enrich B, Oberhuber G, Rescigno M
. The role of gut vascular barrier in experimental alcoholic liver disease and A. muciniphila supplementation. Gut Microbes. 2020; 12(1):1851986.
PMC: 7714498.
DOI: 10.1080/19490976.2020.1851986.
View
17.
Macpherson A, Harris N
. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004; 4(6):478-85.
DOI: 10.1038/nri1373.
View
18.
Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S
. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019; 25(7):1096-1103.
PMC: 6699990.
DOI: 10.1038/s41591-019-0495-2.
View
19.
Wang G, Jiao T, Xu Y, Li D, Si Q, Hao J
. Bifidobacterium adolescentis and Lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food Funct. 2020; 11(7):6115-6127.
DOI: 10.1039/c9fo02905b.
View
20.
Li S, Lv H, Chen Y, Song H, Zhang Y, Wang S
. N-trimethyl chitosan coated targeting nanoparticles improve the oral bioavailability and antioxidant activity of vitexin. Carbohydr Polym. 2022; 286:119273.
DOI: 10.1016/j.carbpol.2022.119273.
View