6.
Aroonyadet N, Wang X, Song Y, Chen H, Cote R, Thompson M
. Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay. Nano Lett. 2015; 15(3):1943-51.
DOI: 10.1021/nl5047889.
View
7.
Guo S, Dong S
. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011; 40(5):2644-72.
DOI: 10.1039/c0cs00079e.
View
8.
Lee W, Park J, Kim Y, Kim K, Hong B, Cho K
. Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv Mater. 2011; 23(30):3460-4.
DOI: 10.1002/adma.201101340.
View
9.
Liu Q, Aroonyadet N, Song Y, Wang X, Cao X, Liu Y
. Highly Sensitive and Quick Detection of Acute Myocardial Infarction Biomarkers Using InO Nanoribbon Biosensors Fabricated Using Shadow Masks. ACS Nano. 2016; 10(11):10117-10125.
DOI: 10.1021/acsnano.6b05171.
View
10.
Addison G, Beamish M, Hales C, Hodgkins M, Jacobs A, Llewellin P
. An immunoradiometric assay for ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. J Clin Pathol. 1972; 25(4):326-9.
PMC: 477303.
DOI: 10.1136/jcp.25.4.326.
View
11.
Weber P, Ohlendorf D, Wendoloski J, Salemme F
. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989; 243(4887):85-8.
DOI: 10.1126/science.2911722.
View
12.
Cui X, Yang F, Sha Y, Yang X
. Real-time immunoassay of ferritin using surface plasmon resonance biosensor. Talanta. 2008; 60(1):53-61.
DOI: 10.1016/S0039-9140(03)00043-2.
View
13.
Geim A
. Graphene: status and prospects. Science. 2009; 324(5934):1530-4.
DOI: 10.1126/science.1158877.
View
14.
Hess L, Lyuleeva A, Blaschke B, Sachsenhauser M, Seifert M, Garrido J
. Graphene transistors with multifunctional polymer brushes for biosensing applications. ACS Appl Mater Interfaces. 2014; 6(12):9705-10.
DOI: 10.1021/am502112x.
View
15.
Piccinini E, Fenoy G, Cantillo A, Allegretto J, Scotto J, Piccinini J
. Biofunctionalization of Graphene-Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID-19 Diagnostics and Monitoring. Adv Mater Interfaces. 2022; 9(15):2102526.
PMC: 9073996.
DOI: 10.1002/admi.202102526.
View
16.
Fu W, Nef C, Knopfmacher O, Tarasov A, Weiss M, Calame M
. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 2011; 11(9):3597-600.
DOI: 10.1021/nl201332c.
View
17.
Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X
. Graphene field-effect transistor and its application for electronic sensing. Small. 2014; 10(20):4042-65.
DOI: 10.1002/smll.201400463.
View
18.
Wang W, Knovich M, Coffman L, Torti F, Torti S
. Serum ferritin: Past, present and future. Biochim Biophys Acta. 2010; 1800(8):760-9.
PMC: 2893236.
DOI: 10.1016/j.bbagen.2010.03.011.
View
19.
Goldsmith B, Locascio L, Gao Y, Lerner M, Walker A, Lerner J
. Digital Biosensing by Foundry-Fabricated Graphene Sensors. Sci Rep. 2019; 9(1):434.
PMC: 6342992.
DOI: 10.1038/s41598-019-38700-w.
View
20.
Boonkaew S, Teengam P, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O
. Cost-effective paper-based electrochemical immunosensor using a label-free assay for sensitive detection of ferritin. Analyst. 2020; 145(14):5019-5026.
DOI: 10.1039/d0an00564a.
View