» Articles » PMID: 39194245

Influenza Virus Antibodies Inhibit Antigen-specific B Cell Responses in Mice

Overview
Journal J Virol
Date 2024 Aug 28
PMID 39194245
Authors
Affiliations
Soon will be listed here.
Abstract

Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of responses to novel epitopes. To examine the contribution of circulating antibodies to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited. The HA mAb potently inhibited antibody responses against epitopes near the HA mAb binding site. The HA mAb also promoted IgG1 class switching, an effect that, unlike the inhibition of HA responses, relied on signaling through Fc-gamma receptors. These studies suggest that circulating antibodies inhibit B cell responses in an antigen-specific manner, which likely contributes to differences in antibody specificities elicited during primary and secondary influenza virus exposures.IMPORTANCEMost humans are exposed to influenza viruses in childhood and then subsequently exposed to antigenically drifted influenza variants later in life. It is unclear if antibodies elicited by earlier influenza virus exposures impact immunity against new influenza virus strains. Here, we used a mouse model to investigate how an anti-hemagglutinin (HA) monoclonal antibody (mAb) affects B cell and antibody responses to the protein targeted by the monoclonal antibody (HA) and a second protein not targeted by the monoclonal antibody [neuraminidase (NA)]. Collectively, our studies suggest that circulating anti-influenza virus antibodies can potently modulate the magnitude and specificity of antibody responses elicited by secondary influenza virus exposures.

References
1.
Neumann G, Fujii K, Kino Y, Kawaoka Y . An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci U S A. 2005; 102(46):16825-9. PMC: 1283806. DOI: 10.1073/pnas.0505587102. View

2.
Zhang Y, Meyer-Hermann M, George L, Figge M, Khan M, Goodall M . Germinal center B cells govern their own fate via antibody feedback. J Exp Med. 2013; 210(3):457-64. PMC: 3600904. DOI: 10.1084/jem.20120150. View

3.
Liu W, Sohn H, Tolar P, Meckel T, Pierce S . Antigen-induced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. J Immunol. 2010; 184(4):1977-89. PMC: 2931798. DOI: 10.4049/jimmunol.0902334. View

4.
Nicholas R, Sinclair S . Regulation of the immune response. I. Reduction in ability of specific antibody to inhibit long-lasting IgG immunological priming after removal of the Fc fragment. J Exp Med. 1969; 129(6):1183-201. PMC: 2138663. DOI: 10.1084/jem.129.6.1183. View

5.
Kim D, Huey D, Oglesbee M, Niewiesk S . Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood. 2011; 117(23):6143-51. PMC: 3122939. DOI: 10.1182/blood-2010-11-320317. View