6.
He K, Kumar P, Yuan Y, Zhang Z, Li X, Liu H
. A Wide Bandgap Polymer Donor Composed of Benzodithiophene and Oxime-Substituted Thiophene for High-Performance Organic Solar Cells. ACS Appl Mater Interfaces. 2021; 13(22):26441-26450.
DOI: 10.1021/acsami.1c02442.
View
7.
Zhou R, Jiang Z, Yang C, Yu J, Feng J, Adil M
. All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nat Commun. 2019; 10(1):5393.
PMC: 6879588.
DOI: 10.1038/s41467-019-13292-1.
View
8.
Tang J, Liao C, Duan Y, Xu X, Deng M, Yu L
. Wide Band-Gap Polymer Donors Functionalized with Unconventional Carbamate Side Chains for Polymer Solar Cells. Angew Chem Int Ed Engl. 2022; 61(50):e202213252.
DOI: 10.1002/anie.202213252.
View
9.
Zhao C, Yang F, Xia D, Zhang Z, Zhang Y, Yan N
. Thieno[3,4-]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem Commun (Camb). 2020; 56(72):10394-10408.
DOI: 10.1039/d0cc04150e.
View
10.
Yang L, Zhang S, He C, Zhang J, Yao H, Yang Y
. New Wide Band Gap Donor for Efficient Fullerene-Free All-Small-Molecule Organic Solar Cells. J Am Chem Soc. 2017; 139(5):1958-1966.
DOI: 10.1021/jacs.6b11612.
View
11.
Zhang S, Wang X, Tang A, Huang J, Zhan C, Yao J
. Tuning morphology and photovoltaic properties of diketopyrrolopyrrole-based small-molecule solar cells by taloring end-capped aromatic groups. Phys Chem Chem Phys. 2014; 16(10):4664-71.
DOI: 10.1039/c3cp54548b.
View
12.
Xu W, He W, Li G, Wu J, Yang C, Cao Z
. Challenging PM6-like donor polymers for pairing with a Y-type state-of-the-art acceptor in binary blends for bulk heterojunction solar cells. Phys Chem Chem Phys. 2023; 25(4):2916-2925.
DOI: 10.1039/d2cp05414k.
View
13.
He B, Chen Y, Chen J, Chen S, Xiao M, Chen G
. Wide-bandgap donor polymers based on a dicyanodivinyl indacenodithiophene unit for non-fullerene polymer solar cells. RSC Adv. 2022; 11(35):21397-21404.
PMC: 9034166.
DOI: 10.1039/d1ra03233j.
View
14.
Du Z, Chen W, Qiu M, Chen Y, Wang N, Wang T
. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b']dithiophene-based small molecule organic solar cells. Phys Chem Chem Phys. 2015; 17(26):17391-8.
DOI: 10.1039/c5cp02632f.
View
15.
Yuan J, Zhang Y, Zhou L, Zhang C, Lau T, Zhang G
. Fused Benzothiadiazole: A Building Block for n-Type Organic Acceptor to Achieve High-Performance Organic Solar Cells. Adv Mater. 2019; 31(17):e1807577.
DOI: 10.1002/adma.201807577.
View
16.
Liang Y, Wu Y, Feng D, Tsai S, Son H, Li G
. Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc. 2008; 131(1):56-7.
DOI: 10.1021/ja808373p.
View
17.
Keshtov M, Khokhlov A, Godovsky D, Ostapov I, Alekseev V, Xie Z
. Novel Pyrrolo [3,4-b] Dithieno [3, 2-f:2″,3″-h] Quinoxaline-8,10 (9H)-Dione Based Wide Bandgap Conjugated Copolymers for Bulk Heterojunction Polymer Solar Cells. Macromol Rapid Commun. 2022; 43(9):e2200060.
DOI: 10.1002/marc.202200060.
View
18.
Cho M, Seo J, Kim K, Choi D, Prasad P
. Enhanced performance of organic photovoltaic cells fabricated with a methyl thiophene-3-carboxylate-containing alternating conjugated copolymer. Macromol Rapid Commun. 2011; 33(2):146-51.
DOI: 10.1002/marc.201100501.
View
19.
Lan L, Chen Z, Hu Q, Ying L, Zhu R, Liu F
. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63. Adv Sci (Weinh). 2016; 3(9):1600032.
PMC: 5039964.
DOI: 10.1002/advs.201600032.
View
20.
Yuan Y, Kumar P, Ngai J, Gao X, Li X, Liu H
. Wide Bandgap Polymer Donor with Acrylate Side Chains for Non-Fullerene Acceptor-Based Organic Solar Cells. Macromol Rapid Commun. 2022; 43(20):e2200325.
DOI: 10.1002/marc.202200325.
View