6.
Jabs E, Cusano R, Rattner J
. Centromere separation and aneuploidy in human mitotic mutants: Roberts syndrome. Prog Clin Biol Res. 1989; 318:111-8.
View
7.
Monnich M, Kuriger Z, Print C, Horsfield J
. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PLoS One. 2011; 6(5):e20051.
PMC: 3102698.
DOI: 10.1371/journal.pone.0020051.
View
8.
Tomkins D, Sisken J
. Abnormalities in the cell-division cycle in Roberts syndrome fibroblasts: a cellular basis for the phenotypic characteristics?. Am J Hum Genet. 1984; 36(6):1332-40.
PMC: 1684655.
View
9.
Percival S, Thomas H, Amsterdam A, Carroll A, Lees J, Yost H
. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Dis Model Mech. 2015; 8(8):941-55.
PMC: 4527282.
DOI: 10.1242/dmm.019059.
View
10.
Komarov P, Komarova E, Kondratov R, Coon J, Chernov M, Gudkov A
. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999; 285(5434):1733-7.
DOI: 10.1126/science.285.5434.1733.
View
11.
Davidson I, Bauer B, Goetz D, Tang W, Wutz G, Peters J
. DNA loop extrusion by human cohesin. Science. 2019; 366(6471):1338-1345.
DOI: 10.1126/science.aaz3418.
View
12.
Ren Q, Yang H, Gao B, Zhang Z
. Global transcriptional analysis of yeast cell death induced by mutation of sister chromatid cohesin. Comp Funct Genomics. 2008; :634283.
PMC: 2423420.
DOI: 10.1155/2008/634283.
View
13.
Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M
. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet. 2005; 37(5):468-70.
DOI: 10.1038/ng1548.
View
14.
Liao Y, Smyth G, Shi W
. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013; 30(7):923-30.
DOI: 10.1093/bioinformatics/btt656.
View
15.
Gordillo M, Vega H, Trainer A, Hou F, Sakai N, Luque R
. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet. 2008; 17(14):2172-80.
DOI: 10.1093/hmg/ddn116.
View
16.
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V
. RNA velocity of single cells. Nature. 2018; 560(7719):494-498.
PMC: 6130801.
DOI: 10.1038/s41586-018-0414-6.
View
17.
Minamino M, Tei S, Negishi L, Kanemaki M, Yoshimura A, Sutani T
. Temporal Regulation of ESCO2 Degradation by the MCM Complex, the CUL4-DDB1-VPRBP Complex, and the Anaphase-Promoting Complex. Curr Biol. 2018; 28(16):2665-2672.e5.
DOI: 10.1016/j.cub.2018.06.037.
View
18.
Bellows A, Kenna M, Cassimeris L, Skibbens R
. Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Res. 2003; 31(21):6334-43.
PMC: 275453.
DOI: 10.1093/nar/gkg811.
View
19.
Golfier S, Quail T, Kimura H, Brugues J
. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. Elife. 2020; 9.
PMC: 7316503.
DOI: 10.7554/eLife.53885.
View
20.
Salmon T, Evert B, Song B, Doetsch P
. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 2004; 32(12):3712-23.
PMC: 484183.
DOI: 10.1093/nar/gkh696.
View