CRISPR/Cas13a Analysis Based on NASBA Amplification for Norovirus Detection
Affiliations
Human norovirus (HuNoV) is a leading cause of foodborne diseases worldwide, making rapid and accurate detection crucial for prevention and control. In recent years, the CRISPR/Cas13a system, known for its single-base resolution in RNA recognition and unique collateral cleavage activity, is particularly suitable for sensitive and rapid RNA detection. However, isothermal amplification-based CRISPR/Cas13 assays often require an external transcription step, complicating the detection process. In our study, an efficient diagnostic technique based on the NASBA/Cas13a system was established to identify conserved regions at the ORF1-ORF2 junction of norovirus. The RNA amplification techniques [Nucleic Acid Sequence-Based Amplification (NASBA)] integrates reverse transcription and transcription steps, enabling sensitive, accurate, and rapid enrichment of low-abundance RNA. Furthermore, the CRISPR/Cas13a system provides secondary precise recognition of the amplified products, generating a fluorescence signal through its activated accessory collateral cleavage activity. We optimized the reaction kinetics parameters of Cas13a and achieved a detection limit as low as 51pM. The conditions for the cascade reaction involving CRISPR analysis and RNA amplification were optimized. Finally, we validated the reliability and accuracy of the NASBA/Cas13a method by detecting norovirus in shellfish, achieving results comparable to qRT-PCR in a shorter time and detecting viral loads as low as 10 copies/μL.
Detection of Potato Pathogen by CRISPR/Cas13a Analysis of NASBA Amplicons.
Khmeleva S, Kurbatov L, Ptitsyn K, Timoshenko O, Morozova D, Suprun E Int J Mol Sci. 2024; 25(22).
PMID: 39596282 PMC: 11595182. DOI: 10.3390/ijms252212218.