» Articles » PMID: 39152779

Bazedoxifene Inhibits Cell Viability, Colony-Forming Activity, and Cell Migration in Human Non-Small Cell Lung Cancer Cells and Improves the Treatment Efficacy of Paclitaxel and Gemcitabine

Overview
Journal Clin Respir J
Specialty Pulmonary Medicine
Date 2024 Aug 17
PMID 39152779
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Bazedoxifene is a third-generation selective estrogen receptor modulator that inhibits the IL6/IL6R/GP130 signaling pathway by inhibiting IL6-induced homodimerization of GP130. Considering that the IL6/IL6R/GP130 signaling pathway is important in tumorigenesis and metastasis, bazedoxifene is thought to have an antitumor effect, which has been proven preliminarily in breast cancer and pancreatic cancer but has not yet been studied in non-small cell lung cancer (NSCLC). This study is aimed at evaluating the antitumor effect of bazedoxifene in NSCLC.

Methods: A549 and H1299 NSCLC cell lines were employed and exposed to various concentrations of bazedoxifene, paclitaxel, gemcitabine, and their combinations for cell viability, colony formation, and wound healing assays to demonstrate the antitumor effect of bazedoxifene with or without paclitaxel or gemcitabine.

Results: MTT cell viability, colony formation, and wound healing assays showed that bazedoxifene was capable of inhibiting cell viability, colony formation, and cell migration in a dose-dependent manner. In addition, bazedoxifene was capable of working with paclitaxel or gemcitabine synergistically to inhibit cell viability, colony formation, and cell migration.

Conclusion: This study demonstrated the potential antitumor effect of bazedoxifene and its ability to improve the treatment efficacy of paclitaxel and gemcitabine.

References
1.
Fu S, Lin J . Blocking Interleukin-6 and Interleukin-8 Signaling Inhibits Cell Viability, Colony-forming Activity, and Cell Migration in Human Triple-negative Breast Cancer and Pancreatic Cancer Cells. Anticancer Res. 2018; 38(11):6271-6279. DOI: 10.21873/anticanres.12983. View

2.
Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A . Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3):209-249. DOI: 10.3322/caac.21660. View

3.
Ge X, Peng X, Li M, Ji F, Chen J, Zhang D . OGT regulated O-GlcNacylation promotes migration and invasion by activating IL-6/STAT3 signaling in NSCLC cells. Pathol Res Pract. 2021; 225:153580. DOI: 10.1016/j.prp.2021.153580. View

4.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. PMC: 3855844. DOI: 10.1038/nmeth.2019. View

5.
Ohe Y, Ohashi Y, Kubota K, Tamura T, Nakagawa K, Negoro S . Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann Oncol. 2006; 18(2):317-23. DOI: 10.1093/annonc/mdl377. View