» Articles » PMID: 39148551

Interaction of Sp. RIT 592 Induces the Production of Broad-spectrum Antibiotics in Sp. RIT 594

Abstract

Antimicrobial resistance (AMR) is one of the most alarming global public health challenges of the 21st century. Over 3 million antimicrobial-resistant infections occur in the United States annually, with nearly 50,000 cases being fatal. Innovations in drug discovery methods and platforms are crucial to identify novel antibiotics to combat AMR. We present the isolation and characterization of potentially novel antibiotic lead compounds produced by the cross-feeding of two rhizosphere bacteria, sp. RIT 592 and sp. RIT 594. We used solid-phase extraction (SPE) followed by liquid chromatography (LC) to enrich antibiotic extracts and subsequently mass spectrometry (MS) analysis of collected fractions for compound structure identification and characterization. The MS data were processed through the Global Natural Product Social Molecular Networking (GNPS) database. The supernatant from RIT 592 induced RIT 594 to produce a cocktail of antimicrobial compounds active against Gram-positive and negative bacteria. The GNPS analysis indicated compounds with known antimicrobial activity in the bioactive samples, including oligopeptides and their derivatives. This work emphasizes the utility of microbial community-based platforms to discover novel clinically relevant secondary metabolites. Future work includes further structural characterization and antibiotic activity evaluation of the individual compounds against pathogenic multidrug-resistant (MDR) bacteria.

References
1.
Smanski M, Schlatter D, Kinkel L . Leveraging ecological theory to guide natural product discovery. J Ind Microbiol Biotechnol. 2015; 43(2-3):115-28. DOI: 10.1007/s10295-015-1683-9. View

2.
Coates A, Hu Y, Bax R, Page C . The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 2002; 1(11):895-910. DOI: 10.1038/nrd940. View

3.
Van Moll L, De Smet J, Cos P, Van Campenhout L . Microbial symbionts of insects as a source of new antimicrobials: a review. Crit Rev Microbiol. 2021; 47(5):562-579. DOI: 10.1080/1040841X.2021.1907302. View

4.
Tedesco P, Palma Esposito F, Masino A, Vitale G, Tortorella E, Poli A . Isolation and Characterization of Strain sp. KRL4, a Producer of Bioactive Secondary Metabolites from a Tibetan Glacier. Microorganisms. 2021; 9(5). PMC: 8143284. DOI: 10.3390/microorganisms9050890. View

5.
Minogue T, Daligault H, Davenport K, Bishop-Lilly K, Broomall S, Bruce D . Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announc. 2014; 2(5). PMC: 4175212. DOI: 10.1128/genomeA.00969-14. View