Phytomediated Copper Oxide Nanoparticles Derived from the Fronds of Adiantum Venustum D.Don: Evaluation of Their Biomedical Potential
Overview
Biotechnology
Authors
Affiliations
The green synthesis of copper oxide nanoparticles (CuO) mediated by crude ethanolic extract and the n-butanol fraction of Adiantum venustum represents a groundbreaking approach in nanotechnology, combining ecological sustainability with advanced functionality. This innovative method leverages the natural bioactive compounds present in A. venustum to produce CuO nanoparticles, which exhibit remarkable antioxidant, anti-inflammatory, antimicrobial, and anti-proliferative properties. The green synthesized nanoparticles were characterized using a variety of techniques, as XRD confirmed the crystalline nature of the CuO nanoparticles, with a crystallite size of 14.65 nm for CuO-C and 18.73 nm for CuO-B. The grain sizes of CuO-C (14.09 ± 0.17 nm) and CuO-B (67.88 ± 2.08 nm) were determined using transmission electron microscopy micrographs. Furthermore, the synthesized nanomaterial and the crude ethanolic extract, n-butanol fraction, were examined for their biological potentials namely antioxidant, anti-inflammatory, antimicrobial, and anti-proliferative activity against HeLa cancer cells. Among the synthesized nanomaterials, copper oxide nanoparticles synthesized by utilizing the n-butanol fraction have appeared as a potential biomedical agent. CuO-B has arisen as an antioxidant agent with IC values of 44.63 ± 0.49 µg/mL, 48.49 ± 0.17 µg/mL, and 35.39 ± 0.61 µg/mL for DPPH, FRAP, and reducing power assay, respectively. Furthermore, the significant antibacterial potential of CuO-B against gram-positive (S. aureus MIC 46.88 µg/mL) and gram-negative (K. pneumonia MIC 23.48 µg/mL) bacterial strains cannot be neglected either. Along with this, the IC value (138.07 µg/mL) of CuO-B against HeLa cells proved it to be a potential anticancerous agent. Hence, this novel approach emphasized that these synthesized nanoparticles have tremendous biological potential and can be applied to various fields of agriculture and biomedicine.