6.
Wang R, Hou M, Xu Z, Tan L, Zhong C, Zhu L
. A new red fluorophore with aggregation enhanced emission by an unexpected "One-step" protocol. RSC Adv. 2022; 8(33):18327-18333.
PMC: 9080569.
DOI: 10.1039/c8ra00955d.
View
7.
Hong Y, Lam J, Tang B
. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (Camb). 2009; (29):4332-53.
DOI: 10.1039/b904665h.
View
8.
Feng J, Xu Y, Huang W, Kong H, Li Y, Cheng H
. A magnetic SERS immunosensor for highly sensitive and selective detection of human carboxylesterase 1 in human serum samples. Anal Chim Acta. 2020; 1097:176-185.
DOI: 10.1016/j.aca.2019.11.004.
View
9.
Luo J, Xie Z, Lam J, Cheng L, Chen H, Qiu C
. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun (Camb). 2002; (18):1740-1.
DOI: 10.1039/b105159h.
View
10.
Qi Y, Wang H, Chen L, Yang B, Yang Y, He Z
. Multifunctional Fluorescent Probe for Simultaneously Detecting Microviscosity, Micropolarity, and Carboxylesterases and Its Application in Bioimaging. Anal Chem. 2022; 94(11):4594-4601.
DOI: 10.1021/acs.analchem.1c04286.
View
11.
Lian J, Nelson R, Lehner R
. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell. 2017; 9(2):178-195.
PMC: 5818367.
DOI: 10.1007/s13238-017-0437-z.
View
12.
Wang D, Jin Q, Hou J, Feng L, Li N, Li S
. Highly sensitive and selective detection of human carboxylesterase 1 activity by liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2015; 1008:212-218.
DOI: 10.1016/j.jchromb.2015.11.046.
View
13.
Zhao M, Zhang T, Yu F, Guo L, Wu B
. E4bp4 regulates carboxylesterase 2 enzymes through repression of the nuclear receptor Rev-erbα in mice. Biochem Pharmacol. 2018; 152:293-301.
DOI: 10.1016/j.bcp.2018.04.005.
View
14.
Zhu F, Mei L, Tian R, Li C, Wang Y, Xiang S
. Recent advances in super-resolution optical imaging based on aggregation-induced emission. Chem Soc Rev. 2024; 53(7):3350-3383.
DOI: 10.1039/d3cs00698k.
View
15.
Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y
. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J Am Chem Soc. 2010; 132(8):2795-801.
DOI: 10.1021/ja910090v.
View
16.
Laizure S, Herring V, Hu Z, Witbrodt K, Parker R
. The role of human carboxylesterases in drug metabolism: have we overlooked their importance?. Pharmacotherapy. 2013; 33(2):210-22.
PMC: 4572478.
DOI: 10.1002/phar.1194.
View
17.
Shu Y, Huang C, Liu H, Hu F, Wen H, Liu J
. A hemicyanine-based fluorescent probe for simultaneous imaging of Carboxylesterases and Histone deacetylases in hepatocellular carcinoma. Spectrochim Acta A Mol Biomol Spectrosc. 2022; 281:121529.
DOI: 10.1016/j.saa.2022.121529.
View
18.
Liu X, Flinders C, Mumenthaler S, Hummon A
. MALDI Mass Spectrometry Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids. J Am Soc Mass Spectrom. 2017; 29(3):516-526.
PMC: 5839975.
DOI: 10.1007/s13361-017-1851-4.
View
19.
Mei J, Huang Y, Tian H
. Progress and Trends in AIE-Based Bioprobes: A Brief Overview. ACS Appl Mater Interfaces. 2017; 10(15):12217-12261.
DOI: 10.1021/acsami.7b14343.
View
20.
Lin X, Liu M, Yi Q, Zhou Y, Su J, Qing B
. Design, synthesis, and evaluation of a carboxylesterase detection probe with therapeutic effects. Talanta. 2024; 274:126060.
DOI: 10.1016/j.talanta.2024.126060.
View