6.
Liu J, Cheng W, Zhang K, Liu H, Li J, Tressel J
. High-Efficiency Photodynamic Antibacterial Activity of NH-MIL-101(Fe)@MoS/ZnO Ternary Composites. ACS Appl Bio Mater. 2022; 5(8):3912-3922.
DOI: 10.1021/acsabm.2c00439.
View
7.
Malik Z, Hanania J, Nitzan Y
. Bactericidal effects of photoactivated porphyrins--an alternative approach to antimicrobial drugs. J Photochem Photobiol B. 1990; 5(3-4):281-93.
DOI: 10.1016/1011-1344(90)85044-w.
View
8.
Partridge S, Kwong S, Firth N, Jensen S
. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018; 31(4).
PMC: 6148190.
DOI: 10.1128/CMR.00088-17.
View
9.
Hurdle J, ONeill A, Chopra I, Lee R
. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol. 2010; 9(1):62-75.
PMC: 3496266.
DOI: 10.1038/nrmicro2474.
View
10.
Nichols F, Lu J, Mercado R, Rojas-Andrade M, Ning S, Azhar Z
. Antibacterial Activity of Nitrogen-Doped Carbon Dots Enhanced by Atomic Dispersion of Copper. Langmuir. 2020; 36(39):11629-11636.
DOI: 10.1021/acs.langmuir.0c02293.
View
11.
Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H
. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014; 5:4596.
PMC: 4143951.
DOI: 10.1038/ncomms5596.
View
12.
Hill E, Pappas H, Whitten D
. Activating the antimicrobial activity of an anionic singlet-oxygen sensitizer through surfactant complexation. Langmuir. 2014; 30(18):5052-6.
DOI: 10.1021/la501230m.
View
13.
Wang H, Jiang S, Chen S, Li D, Zhang X, Shao W
. Enhanced Singlet Oxygen Generation in Oxidized Graphitic Carbon Nitride for Organic Synthesis. Adv Mater. 2016; 28(32):6940-5.
DOI: 10.1002/adma.201601413.
View
14.
Ristic B, Milenkovic M, Dakic I, Todorovic-Markovic B, Milosavljevic M, Budimir M
. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014; 35(15):4428-35.
DOI: 10.1016/j.biomaterials.2014.02.014.
View
15.
Kumar A, Kumar P, Joshi C, Manchanda M, Boukherroub R, Jain S
. Nickel Decorated on Phosphorous-Doped Carbon Nitride as an Efficient Photocatalyst for Reduction of Nitrobenzenes. Nanomaterials (Basel). 2017; 6(4).
PMC: 5302576.
DOI: 10.3390/nano6040059.
View
16.
Rojas-Andrade M, Nguyen T, Mistler W, Armas J, Lu J, Roseman G
. Antimicrobial activity of graphene oxide quantum dots: impacts of chemical reduction. Nanoscale Adv. 2022; 2(3):1074-1083.
PMC: 9417586.
DOI: 10.1039/c9na00698b.
View
17.
Rojas-Andrade M, Chata G, Rouholiman D, Liu J, Saltikov C, Chen S
. Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale. 2017; 9(3):994-1006.
DOI: 10.1039/c6nr08733g.
View
18.
Vatansever F, de Melo W, Avci P, Vecchio D, Sadasivam M, Gupta A
. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013; 37(6):955-89.
PMC: 3791156.
DOI: 10.1111/1574-6976.12026.
View
19.
Dwyer D, Kohanski M, Collins J
. Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol. 2009; 12(5):482-9.
PMC: 2761529.
DOI: 10.1016/j.mib.2009.06.018.
View
20.
Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies R
. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci U S A. 2007; 104(17):7223-8.
PMC: 1851884.
DOI: 10.1073/pnas.0611328104.
View