Dual Emission with Efficient Phosphorescence Promoted by Intermolecular Halogen Interactions in Luminescent Tetranuclear Zinc(II) Clusters
Overview
Affiliations
The development of Zn-based phosphorescent materials, associated with a ligand-centered (LC) transition, is extremely limited. Herein, we demonstrated dual emissions including fluorescence and phosphorescence in luminescent tetranuclear Zn(II) clusters [ZnL(μ-OMe)X] ( = methyl-5-iode-3-methoxysalicylate; X = I, Br, Cl), incorporating iodine-substituted ligands. Single-crystal X-ray structural analyses and variable-temperature emission spectra studies revealed the presence of iodine substitutions, and intermolecular halogen interactions produced the internal/external heavy-atom effects and yielded strong green phosphorescence with a long emission lifetime (λ = 510-522 nm, Φ = 0.28-0.47, τ = 0.78-0.95 ms, at 77 K). This work provided a new example that the introduction of halogen interactions is an advantageous approach for inducing phosphorescence in fluorescent metal complexes.