6.
Hu G, Steen B, Lian T, Sham A, Tam N, Tangen K
. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog. 2007; 3(3):e42.
PMC: 1828699.
DOI: 10.1371/journal.ppat.0030042.
View
7.
Missall T, Pusateri M, Donlin M, Chambers K, Corbett J, Lodge J
. Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell. 2006; 5(3):518-29.
PMC: 1398057.
DOI: 10.1128/EC.5.3.518-529.2006.
View
8.
Haas A, Scheglmann D, Lazar T, Gallwitz D, Wickner W
. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J. 1995; 14(21):5258-70.
PMC: 394635.
DOI: 10.1002/j.1460-2075.1995.tb00210.x.
View
9.
Collopy-Junior I, Esteves F, Nimrichter L, Rodrigues M, Alviano C, Meyer-Fernandes J
. An ectophosphatase activity in Cryptococcus neoformans. FEMS Yeast Res. 2006; 6(7):1010-7.
DOI: 10.1111/j.1567-1364.2006.00105.x.
View
10.
Davidson R, Cruz M, Sia R, Allen B, Alspaugh J, Heitman J
. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol. 2000; 29(1):38-48.
DOI: 10.1006/fgbi.1999.1180.
View
11.
Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J
. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol. 2018; 21(3):e12961.
PMC: 6379112.
DOI: 10.1111/cmi.12961.
View
12.
Chow E, Clancey S, Billmyre R, Floyd Averette A, Granek J, Mieczkowski P
. Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans. PLoS Genet. 2017; 13(4):e1006667.
PMC: 5380312.
DOI: 10.1371/journal.pgen.1006667.
View
13.
Do E, Park M, Hu G, Caza M, Kronstad J, Jung W
. The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans. Biochem Biophys Res Commun. 2016; 477(4):706-711.
PMC: 5183541.
DOI: 10.1016/j.bbrc.2016.06.123.
View
14.
Johnson D, Kanao T, Hedrich S
. Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects. Front Microbiol. 2012; 3:96.
PMC: 3305923.
DOI: 10.3389/fmicb.2012.00096.
View
15.
Weissman Z, Shemer R, Conibear E, Kornitzer D
. An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol. 2008; 69(1):201-17.
DOI: 10.1111/j.1365-2958.2008.06277.x.
View
16.
Jung W, Sham A, White R, Kronstad J
. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 2006; 4(12):e410.
PMC: 1637126.
DOI: 10.1371/journal.pbio.0040410.
View
17.
Yan H, Huang J, Zhang H, Shim W
. A Rab GTPase protein FvSec4 is necessary for fumonisin B1 biosynthesis and virulence in Fusarium verticillioides. Curr Genet. 2019; 66(1):205-216.
DOI: 10.1007/s00294-019-01013-6.
View
18.
Horianopoulos L, Hu G, Caza M, Schmitt K, Overby P, Johnson J
. The Novel J-Domain Protein Mrj1 Is Required for Mitochondrial Respiration and Virulence in Cryptococcus neoformans. mBio. 2020; 11(3).
PMC: 7373193.
DOI: 10.1128/mBio.01127-20.
View
19.
Li Y, Li B, Liu L, Chen H, Zhang H, Zheng X
. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum. Sci Rep. 2015; 5:18101.
PMC: 4674805.
DOI: 10.1038/srep18101.
View
20.
Bernard M, Mouyna I, Dubreucq G, Debeaupuis J, Fontaine T, Vorgias C
. Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology (Reading). 2002; 148(Pt 9):2819-2829.
DOI: 10.1099/00221287-148-9-2819.
View