6.
Zhang K, Cloonan P, Sundaram S, Liu F, Das S, Ewoldt J
. Plakophilin-2 truncating variants impair cardiac contractility by disrupting sarcomere stability and organization. Sci Adv. 2021; 7(42):eabh3995.
PMC: 8519574.
DOI: 10.1126/sciadv.abh3995.
View
7.
Ruan J, Tulloch N, Razumova M, Saiget M, Muskheli V, Pabon L
. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation. 2016; 134(20):1557-1567.
PMC: 5123912.
DOI: 10.1161/CIRCULATIONAHA.114.014998.
View
8.
Legant W, Pathak A, Yang M, Deshpande V, McMeeking R, Chen C
. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci U S A. 2009; 106(25):10097-102.
PMC: 2700905.
DOI: 10.1073/pnas.0900174106.
View
9.
Jayne R, Karakan M, Zhang K, Pierce N, Michas C, Bishop D
. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers. Lab Chip. 2021; 21(9):1724-1737.
DOI: 10.1039/d0lc01078b.
View
10.
Tani H, Kobayashi E, Yagi S, Tanaka K, Kameda-Haga K, Shibata S
. Heart-derived collagen promotes maturation of engineered heart tissue. Biomaterials. 2023; 299:122174.
DOI: 10.1016/j.biomaterials.2023.122174.
View
11.
Hnatiuk A, Briganti F, Staudt D, Mercola M
. Human iPSC modeling of heart disease for drug development. Cell Chem Biol. 2021; 28(3):271-282.
PMC: 8054828.
DOI: 10.1016/j.chembiol.2021.02.016.
View
12.
Tamargo M, Nash T, Fleischer S, Kim Y, Vila O, Yeager K
. milliPillar: A Platform for the Generation and Real-Time Assessment of Human Engineered Cardiac Tissues. ACS Biomater Sci Eng. 2021; 7(11):5215-5229.
PMC: 9233181.
DOI: 10.1021/acsbiomaterials.1c01006.
View
13.
Kobeissi H, Jilberto J, Karakan M, Gao X, DePalma S, Das S
. MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles. PLoS One. 2024; 19(3):e0298863.
PMC: 10965069.
DOI: 10.1371/journal.pone.0298863.
View
14.
Xu F, Zhao R, Liu A, Metz T, Shi Y, Bose P
. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues. Lab Chip. 2015; 15(11):2496-503.
PMC: 4439293.
DOI: 10.1039/c4lc01395f.
View
15.
Jilberto J, DePalma S, Lo J, Kobeissi H, Quach L, Lejeune E
. A data-driven computational model for engineered cardiac microtissues. Acta Biomater. 2023; 172:123-134.
PMC: 10938557.
DOI: 10.1016/j.actbio.2023.10.025.
View
16.
Nakao S, Ihara D, Hasegawa K, Kawamura T
. Applications for Induced Pluripotent Stem Cells in Disease Modelling and Drug Development for Heart Diseases. Eur Cardiol. 2020; 15:1-10.
PMC: 7066852.
DOI: 10.15420/ecr.2019.03.
View
17.
Balasubramanian H, Hobson C, Chew T, Aaron J
. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol. 2023; 6(1):1096.
PMC: 10613274.
DOI: 10.1038/s42003-023-05468-9.
View
18.
DePalma S, Davidson C, Stis A, Helms A, Baker B
. Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices. Biomater Sci. 2020; 9(1):93-107.
PMC: 7971708.
DOI: 10.1039/d0bm01247e.
View
19.
Ronaldson-Bouchard K, Ma S, Yeager K, Chen T, Song L, Sirabella D
. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018; 556(7700):239-243.
PMC: 5895513.
DOI: 10.1038/s41586-018-0016-3.
View
20.
Lian X, Zhang J, Azarin S, Zhu K, Hazeltine L, Bao X
. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2012; 8(1):162-75.
PMC: 3612968.
DOI: 10.1038/nprot.2012.150.
View