» Articles » PMID: 39112498

Integrative Radiomics Clustering Analysis to Decipher Breast Cancer Heterogeneity and Prognostic Indicators Through Multiparametric MRI

Overview
Date 2024 Aug 7
PMID 39112498
Authors
Affiliations
Soon will be listed here.
Abstract

Breast cancer diagnosis and treatment have been revolutionized by multiparametric Magnetic Resonance Imaging (mpMRI), encompassing T2-weighted imaging (T2WI), Diffusion-weighted imaging (DWI), and Dynamic Contrast-Enhanced MRI (DCE-MRI). We conducted a retrospective analysis of mpMRI data from 194 breast cancer patients (September 2019 to October 2023). Using 'pyradiomics' for radiomics feature extraction and MOVICS for unsupervised clustering. Interestingly, we identified two distinct patient clusters associated with significant differences in molecular subtypes, particularly in Luminal A subtype distribution (p = 0.03), estrogen receptor (ER) (p = 0.01), progesterone receptor (PR) (p = 0.04), mean tumor size (p < 0.01), lymph node metastasis (LNM) (p = 0.01), and edema (p < 0.01). Our study emphasizes mpMRI's potential in breast cancer by using radiomics-based cluster analysis to categorize tumors, uncovering heterogeneity, and aiding in personalized treatment strategies.

Citing Articles

Multi-omics clustering analysis carries out the molecular-specific subtypes of thyroid carcinoma: implicating for the precise treatment strategies.

Wang Z, Han Q, Hu X, Wang X, Sun R, Huang S Genes Immun. 2025; .

PMID: 40038532 DOI: 10.1038/s41435-025-00322-w.


Construction, validation, and visualization of a web-based nomogram to predict survival in male breast cancer patients with second primary prostate cancer.

Du R, Shang F, Chen X, Jiang X, Liu B, Zhao Z Gland Surg. 2024; 13(11):2023-2042.

PMID: 39678429 PMC: 11635572. DOI: 10.21037/gs-24-287.


Leveraging MRI radiomics signature for predicting the diagnosis of CXCL9 in breast cancer.

Yan L, Chen Y, He J Heliyon. 2024; 10(19):e38640.

PMID: 39430466 PMC: 11490775. DOI: 10.1016/j.heliyon.2024.e38640.

References
1.
Araz M, Soydal C, Gunduz P, Kirmizi A, Bakirarar B, Dizbay Sak S . Can Radiomics Analyses in F-FDG PET/CT Images of Primary Breast Carcinoma Predict Hormone Receptor Status?. Mol Imaging Radionucl Ther. 2022; 31(1):49-56. PMC: 8814554. DOI: 10.4274/mirt.galenos.2022.59140. View

2.
Turner K, Yeo S, Holm T, Shaughnessy E, Guan J . Heterogeneity within molecular subtypes of breast cancer. Am J Physiol Cell Physiol. 2021; 321(2):C343-C354. PMC: 8424677. DOI: 10.1152/ajpcell.00109.2021. View

3.
Zhang J, Wang G, Ren J, Yang Z, Li D, Cui Y . Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma. Eur Radiol. 2022; 32(6):4079-4089. DOI: 10.1007/s00330-021-08504-6. View

4.
Zhu Y, Zhou Y, Zhang W, Xue L, Li Y, Jiang J . Value of quantitative dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging in predicting extramural venous invasion in locally advanced gastric cancer and prognostic significance. Quant Imaging Med Surg. 2021; 11(1):328-340. PMC: 7719945. DOI: 10.21037/qims-20-246. View

5.
Baltzer P, Yang F, Dietzel M, Herzog A, Simon A, Vag T . Sensitivity and specificity of unilateral edema on T2w-TSE sequences in MR-Mammography considering 974 histologically verified lesions. Breast J. 2010; 16(3):233-9. DOI: 10.1111/j.1524-4741.2010.00915.x. View