6.
Provencal N, Arloth J, Cattaneo A, Anacker C, Cattane N, Wiechmann T
. Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proc Natl Acad Sci U S A. 2019; 117(38):23280-23285.
PMC: 7519233.
DOI: 10.1073/pnas.1820842116.
View
7.
Breton C, Marsit C, Faustman E, Nadeau K, Goodrich J, Dolinoy D
. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children's Environmental Health Studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. Environ Health Perspect. 2017; 125(4):511-526.
PMC: 5382002.
DOI: 10.1289/EHP595.
View
8.
McEwen L, ODonnell K, McGill M, Edgar R, Jones M, MacIsaac J
. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc Natl Acad Sci U S A. 2019; 117(38):23329-23335.
PMC: 7519312.
DOI: 10.1073/pnas.1820843116.
View
9.
Graw S, Camerota M, Carter B, Helderman J, Hofheimer J, McGowan E
. NEOage clocks - epigenetic clocks to estimate post-menstrual and postnatal age in preterm infants. Aging (Albany NY). 2021; 13(20):23527-23544.
PMC: 8580352.
DOI: 10.18632/aging.203637.
View
10.
Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J
. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016; 388(10063):3027-3035.
PMC: 5161777.
DOI: 10.1016/S0140-6736(16)31593-8.
View
11.
Kramer B, Niklas V, Abman S
. Bronchopulmonary Dysplasia and Impaired Neurodevelopment-What May Be the Missing Link?. Am J Perinatol. 2022; 39(S 01):S14-S17.
DOI: 10.1055/s-0042-1756677.
View
12.
Majnemer A, Riley P, Shevell M, Birnbaum R, Greenstone H, Coates A
. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Dev Med Child Neurol. 2000; 42(1):53-60.
DOI: 10.1017/s001216220000013x.
View
13.
Schuster J, Uzun A, Stablia J, Schorl C, Mori M, Padbury J
. Effect of prematurity on genome wide methylation in the placenta. BMC Med Genet. 2019; 20(1):116.
PMC: 6599230.
DOI: 10.1186/s12881-019-0835-6.
View
14.
Kanehisa M
. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019; 28(11):1947-1951.
PMC: 6798127.
DOI: 10.1002/pro.3715.
View
15.
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M
. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022; 51(D1):D587-D592.
PMC: 9825424.
DOI: 10.1093/nar/gkac963.
View
16.
Kanehisa M, Goto S
. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999; 28(1):27-30.
PMC: 102409.
DOI: 10.1093/nar/28.1.27.
View
17.
Ren X, Kuan P
. methylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics. 2018; 35(11):1958-1959.
DOI: 10.1093/bioinformatics/bty892.
View
18.
Breeze C, Paul D, Dongen J, Butcher L, Ambrose J, Barrett J
. eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data. Cell Rep. 2016; 17(8):2137-2150.
PMC: 5120369.
DOI: 10.1016/j.celrep.2016.10.059.
View
19.
Breeze C, Reynolds A, Dongen J, Dunham I, Lazar J, Neph S
. eFORGE v2.0: updated analysis of cell type-specific signal in epigenomic data. Bioinformatics. 2019; 35(22):4767-4769.
PMC: 6853678.
DOI: 10.1093/bioinformatics/btz456.
View
20.
Greer C, Troughton R, Adamson P, Harris S
. Preterm birth and cardiac function in adulthood. Heart. 2021; 108(3):172-177.
DOI: 10.1136/heartjnl-2020-318241.
View