6.
Simonicova L, Moye-Rowley W
. Characterizing Candida glabrata Pdr1, a Hyperactive Transcription Factor Involved in Azole Resistance. Methods Mol Biol. 2023; 2658:169-179.
DOI: 10.1007/978-1-0716-3155-3_11.
View
7.
Wang Y, Zhang Z, Lu X, Zong H, Zhuge B
. Transcription factor Hap5 induces gsh2 expression to enhance 2-phenylethanol tolerance and production in an industrial yeast Candida glycerinogenes. Appl Microbiol Biotechnol. 2020; 104(9):4093-4107.
DOI: 10.1007/s00253-020-10509-y.
View
8.
Shrivastava M, Feng J, Coles M, Clark B, Islam A, Dumeaux V
. Modulation of the complex regulatory network for methionine biosynthesis in fungi. Genetics. 2021; 217(2).
PMC: 8045735.
DOI: 10.1093/genetics/iyaa049.
View
9.
Vu B, Thomas G, Moye-Rowley W
. Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata. mBio. 2019; 10(3).
PMC: 6561024.
DOI: 10.1128/mBio.00934-19.
View
10.
Liu Y, Yang X, Gan J, Chen S, Xiao Z, Cao Y
. CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022; 50(W1):W159-W164.
PMC: 9252749.
DOI: 10.1093/nar/gkac394.
View
11.
Carvajal E, van den Hazel H, Balzi E, Goffeau A
. Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes. Mol Gen Genet. 1997; 256(4):406-15.
DOI: 10.1007/s004380050584.
View
12.
Xia H, Kang Y, Ma Z, Hu C, Yang Q, Zhang X
. Evolutionary and reverse engineering in Saccharomyces cerevisiae reveals a Pdr1p mutation-dependent mechanism for 2-phenylethanol tolerance. Microb Cell Fact. 2022; 21(1):269.
PMC: 9789650.
DOI: 10.1186/s12934-022-01996-x.
View
13.
Lan X, Field M, Stover P
. Cell cycle regulation of folate-mediated one-carbon metabolism. Wiley Interdiscip Rev Syst Biol Med. 2018; 10(6):e1426.
PMC: 11875019.
DOI: 10.1002/wsbm.1426.
View
14.
Simonicova L, Moye-Rowley W
. Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor. PLoS Genet. 2020; 16(8):e1009005.
PMC: 7473514.
DOI: 10.1371/journal.pgen.1009005.
View
15.
Wang Y, Zhang H, Lu X, Zong H, Zhuge B
. Advances in 2-phenylethanol production from engineered microorganisms. Biotechnol Adv. 2019; 37(3):403-409.
DOI: 10.1016/j.biotechadv.2019.02.005.
View
16.
Khakhina S, Simonicova L, Moye-Rowley W
. Positive autoregulation and repression of transactivation are key regulatory features of the Candida glabrata Pdr1 transcription factor. Mol Microbiol. 2018; 107(6):747-764.
PMC: 5842128.
DOI: 10.1111/mmi.13913.
View
17.
Martinez-Avila O, Sanchez A, Font X, Barrena R
. Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives. Appl Microbiol Biotechnol. 2018; 102(23):9991-10004.
DOI: 10.1007/s00253-018-9384-8.
View
18.
Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S
. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng. 2011; 113(4):421-30.
DOI: 10.1016/j.jbiosc.2011.11.010.
View
19.
Wang H, Li Y, Che Y, Yang D, Wang Q, Yang H
. Production of l-Methionine from 3-Methylthiopropionaldehyde and -Acetylhomoserine by Catalysis of the Yeast -Acetylhomoserine Sulfhydrylase. J Agric Food Chem. 2021; 69(28):7932-7937.
DOI: 10.1021/acs.jafc.1c02419.
View
20.
Tan Q, Zhao X, He H, Zhang J, Yi T
. Carbamoyl phosphate synthetase subunit Cpa1 interacting with Dut1, controls development, arginine biosynthesis, and pathogenicity of Colletotrichum gloeosporioides. Fungal Biol. 2021; 125(3):184-190.
DOI: 10.1016/j.funbio.2020.10.009.
View