6.
Masoud A, Bihaqi S, Alansi B, Dash M, Subaiea G, Renehan W
. Altered microRNA, mRNA, and Protein Expression of Neurodegeneration-Related Biomarkers and Their Transcriptional and Epigenetic Modifiers in a Human Tau Transgenic Mouse Model in Response to Developmental Lead Exposure. J Alzheimers Dis. 2018; 63(1):273-282.
PMC: 7092362.
DOI: 10.3233/JAD-170824.
View
7.
Dou J, Farooqui Z, Faulk C, Barks A, Jones T, Dolinoy D
. Perinatal Lead (Pb) Exposure and Cortical Neuron-Specific DNA Methylation in Male Mice. Genes (Basel). 2019; 10(4).
PMC: 6523909.
DOI: 10.3390/genes10040274.
View
8.
Galal M, Elleithy E, Abdrabou M, Yasin N, Shaheen Y
. Modulation of caspase-3 gene expression and protective effects of garlic and spirulina against CNS neurotoxicity induced by lead exposure in male rats. Neurotoxicology. 2019; 72:15-28.
DOI: 10.1016/j.neuro.2019.01.006.
View
9.
Wang T, Guan R, Zou Y, Zheng G, Shen X, Cao Z
. MiR-130/SNAP-25 axis regulate presynaptic alteration in anterior cingulate cortex involved in lead induced attention deficits. J Hazard Mater. 2022; 443(Pt B):130249.
DOI: 10.1016/j.jhazmat.2022.130249.
View
10.
Meyer D, Crofts E, Akemann C, Gurdziel K, Farr R, Baker B
. Developmental exposure to Pb induces transgenerational changes to zebrafish brain transcriptome. Chemosphere. 2019; 244:125527.
PMC: 7015790.
DOI: 10.1016/j.chemosphere.2019.125527.
View
11.
Xie J, Wu S, Szadowski H, Min S, Yang Y, Bowman A
. Developmental Pb exposure increases AD risk via altered intracellular Ca homeostasis in hiPSC-derived cortical neurons. J Biol Chem. 2023; 299(8):105023.
PMC: 10413359.
DOI: 10.1016/j.jbc.2023.105023.
View
12.
Wagner P, Park H, Wang Z, Kirchner R, Wei Y, Su L
. Effects of Lead on Gene Expression in Neural Stem Cells and Associations between Up-regulated Genes and Cognitive Scores in Children. Environ Health Perspect. 2016; 125(4):721-729.
PMC: 5381979.
DOI: 10.1289/EHP265.
View
13.
Neely M, Xie S, Prince L, Kim H, Tukker A, Aschner M
. Single cell RNA sequencing detects persistent cell type- and methylmercury exposure paradigm-specific effects in a human cortical neurodevelopmental model. Food Chem Toxicol. 2021; 154:112288.
PMC: 8761390.
DOI: 10.1016/j.fct.2021.112288.
View
14.
Zhang S, Wu L, Zhang J, Wang X, Yang X, Xin Y
. Multi-omics analysis reveals Mn exposure affects ferroptosis pathway in zebrafish brain. Ecotoxicol Environ Saf. 2023; 253:114616.
DOI: 10.1016/j.ecoenv.2023.114616.
View
15.
Zhang Y, Chen K, Sloan S, Bennett M, Scholze A, OKeeffe S
. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014; 34(36):11929-47.
PMC: 4152602.
DOI: 10.1523/JNEUROSCI.1860-14.2014.
View
16.
Rahman A, Khan K, Rao M
. Exposure to low level of lead during preweaning period increases metallothionein-3 expression and dysregulates divalent cation levels in the brain of young rats. Neurotoxicology. 2018; 65:135-143.
DOI: 10.1016/j.neuro.2018.02.008.
View
17.
An J, Cai T, Che H, Yu T, Cao Z, Liu X
. The changes of miRNA expression in rat hippocampus following chronic lead exposure. Toxicol Lett. 2014; 229(1):158-66.
DOI: 10.1016/j.toxlet.2014.06.002.
View
18.
Patani R, Hardingham G, Liddelow S
. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol. 2023; 19(7):395-409.
DOI: 10.1038/s41582-023-00822-1.
View
19.
Westerink R, Vijverberg H
. Ca(2+) -independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb(2+). J Neurochem. 2002; 80(5):861-73.
DOI: 10.1046/j.0022-3042.2001.00751.x.
View
20.
Badia-I-Mompel P, Wessels L, Muller-Dott S, Trimbour R, Ramirez Flores R, Argelaguet R
. Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet. 2023; 24(11):739-754.
DOI: 10.1038/s41576-023-00618-5.
View