6.
Xie W, Zhang C, Zhou X, Wang P
. Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Appl Microbiol Biotechnol. 2014; 98(18):7971-82.
DOI: 10.1007/s00253-014-5838-9.
View
7.
Zhu H, Fu Y, Yu J, Jing W, Zhou M
. Metagenomic insight on consortium degradation of soil weathered petroleum and its supplement based on gene abundance change. Enzyme Microb Technol. 2023; 169:110285.
DOI: 10.1016/j.enzmictec.2023.110285.
View
8.
Kuczynski J, Lauber C, Walters W, Parfrey L, Clemente J, Gevers D
. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011; 13(1):47-58.
PMC: 5119550.
DOI: 10.1038/nrg3129.
View
9.
Salam L, Obayori S, Nwaokorie F, Suleiman A, Mustapha R
. Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environ Sci Pollut Res Int. 2017; 24(8):7139-7159.
DOI: 10.1007/s11356-017-8364-3.
View
10.
Oni F, Esmaeel Q, Onyeka J, Adeleke R, Jacquard C, Clement C
. Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules. 2022; 27(2).
PMC: 8777863.
DOI: 10.3390/molecules27020372.
View
11.
Navarro-Noya Y, Valenzuela-Encinas C, Sandoval-Yuriar A, Jimenez-Bueno N, Marsch R, Dendooven L
. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil. Archaea. 2015; 2015:646820.
PMC: 4444560.
DOI: 10.1155/2015/646820.
View
12.
Paul D
. Osmotic stress adaptations in rhizobacteria. J Basic Microbiol. 2012; 53(2):101-10.
DOI: 10.1002/jobm.201100288.
View
13.
Li J, Wang L, Liu Y, Zhou L, Gang H, Liu J
. Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms. 2021; 9(10).
PMC: 8540375.
DOI: 10.3390/microorganisms9102030.
View
14.
Medic A, Ljesevic M, Inui H, Beskoski V, Kojic I, Stojanovic K
. Efficient biodegradation of petroleum -alkanes and polycyclic aromatic hydrocarbons by polyextremophilic san ai with multidegradative capacity. RSC Adv. 2022; 10(24):14060-14070.
PMC: 9051604.
DOI: 10.1039/c9ra10371f.
View
15.
Johnston J, Lim E, Roh H
. Impact of upstream oil extraction and environmental public health: A review of the evidence. Sci Total Environ. 2018; 657:187-199.
PMC: 6344296.
DOI: 10.1016/j.scitotenv.2018.11.483.
View
16.
Shan J, Zhao X, Sheng R, Xia Y, Ti C, Quan X
. Dissimilatory Nitrate Reduction Processes in Typical Chinese Paddy Soils: Rates, Relative Contributions, and Influencing Factors. Environ Sci Technol. 2016; 50(18):9972-80.
DOI: 10.1021/acs.est.6b01765.
View
17.
Gao H, Wu M, Liu H, Xu Y, Liu Z
. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environ Pollut. 2021; 293:118511.
DOI: 10.1016/j.envpol.2021.118511.
View
18.
Behera S, Das S
. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol Res. 2023; 273:127399.
DOI: 10.1016/j.micres.2023.127399.
View
19.
Patel V, Sharma A, Lal R, Al-Dhabi N, Madamwar D
. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates. BMC Microbiol. 2016; 16:50.
PMC: 4802719.
DOI: 10.1186/s12866-016-0669-8.
View
20.
Camacho-Montealegre C, Rodrigues E, Kumazawa Morais D, Totola M
. Prokaryotic community diversity during bioremediation of crude oil contaminated oilfield soil: effects of hydrocarbon concentration and salinity. Braz J Microbiol. 2021; 52(2):787-800.
PMC: 8105486.
DOI: 10.1007/s42770-021-00476-5.
View