6.
Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L
. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018; 563(7729):131-136.
DOI: 10.1038/s41586-018-0629-6.
View
7.
Jiang H, Xue X, Panda S, Kawale A, Hooy R, Liang F
. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 2019; 38(21):e102718.
PMC: 6826206.
DOI: 10.15252/embj.2019102718.
View
8.
Michalski S, de Oliveira Mann C, Stafford C, Witte G, Bartho J, Lammens K
. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature. 2020; 587(7835):678-682.
DOI: 10.1038/s41586-020-2748-0.
View
9.
Pathare G, Decout A, Gluck S, Cavadini S, Makasheva K, Hovius R
. Structural mechanism of cGAS inhibition by the nucleosome. Nature. 2020; 587(7835):668-672.
DOI: 10.1038/s41586-020-2750-6.
View
10.
Zhao B, Xu P, Rowlett C, Jing T, Shinde O, Lei Y
. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature. 2020; 587(7835):673-677.
PMC: 7704945.
DOI: 10.1038/s41586-020-2749-z.
View
11.
Boyer J, Spangler C, Strauss J, Cesmat A, Liu P, McGinty R
. Structural basis of nucleosome-dependent cGAS inhibition. Science. 2020; 370(6515):450-454.
PMC: 8189757.
DOI: 10.1126/science.abd0609.
View
12.
Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N
. Structural basis for the inhibition of cGAS by nucleosomes. Science. 2020; 370(6515):455-458.
PMC: 7584773.
DOI: 10.1126/science.abd0237.
View
13.
Wischnewski M, Ablasser A
. Interplay of cGAS with chromatin. Trends Biochem Sci. 2021; 46(10):822-831.
DOI: 10.1016/j.tibs.2021.05.011.
View
14.
Laplante M, Sabatini D
. mTOR signaling in growth control and disease. Cell. 2012; 149(2):274-93.
PMC: 3331679.
DOI: 10.1016/j.cell.2012.03.017.
View
15.
Saxton R, Sabatini D
. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017; 169(2):361-371.
DOI: 10.1016/j.cell.2017.03.035.
View
16.
Battaglioni S, Benjamin D, Walchli M, Maier T, Hall M
. mTOR substrate phosphorylation in growth control. Cell. 2022; 185(11):1814-1836.
DOI: 10.1016/j.cell.2022.04.013.
View
17.
Gkountakos A, Pilotto S, Mafficini A, Vicentini C, Simbolo M, Milella M
. Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis. 2018; 39(8):971-980.
DOI: 10.1093/carcin/bgy086.
View
18.
Moraitis D, Karanikou M, Liakou C, Dimas K, Tzimas G, Tseleni-Balafouta S
. SIN1, a critical component of the mTOR-Rictor complex, is overexpressed and associated with AKT activation in medullary and aggressive papillary thyroid carcinomas. Surgery. 2014; 156(6):1542-8.
DOI: 10.1016/j.surg.2014.08.095.
View
19.
Yang H, Rudge D, Koos J, Vaidialingam B, Yang H, Pavletich N
. mTOR kinase structure, mechanism and regulation. Nature. 2013; 497(7448):217-23.
PMC: 4512754.
DOI: 10.1038/nature12122.
View
20.
Cipponi A, Goode D, Bedo J, McCabe M, Pajic M, Croucher D
. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science. 2020; 368(6495):1127-1131.
DOI: 10.1126/science.aau8768.
View