6.
Hoang D, Pham P, Bach T, Ngo A, Nguyen Q, Phan T
. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022; 7(1):272.
PMC: 9357075.
DOI: 10.1038/s41392-022-01134-4.
View
7.
Deng L, Deng P, Ruan Y, Xu Z, Liu N, Wen X
. A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. J Neurosci. 2013; 33(13):5655-67.
PMC: 3664932.
DOI: 10.1523/JNEUROSCI.2973-12.2013.
View
8.
Molyneaux B, Arlotta P, Menezes J, Macklis J
. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007; 8(6):427-37.
DOI: 10.1038/nrn2151.
View
9.
Arlotta P, Molyneaux B, Chen J, Inoue J, Kominami R, Macklis J
. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron. 2005; 45(2):207-21.
DOI: 10.1016/j.neuron.2004.12.036.
View
10.
Lu P, Gomes-Leal W, Anil S, Dobkins G, Huie J, Ferguson A
. Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury. Stem Cell Reports. 2019; 13(1):105-114.
PMC: 6626851.
DOI: 10.1016/j.stemcr.2019.05.011.
View
11.
Nagoshi N, Tsuji O, Nakamura M, Okano H
. Cell therapy for spinal cord injury using induced pluripotent stem cells. Regen Ther. 2019; 11:75-80.
PMC: 6581851.
DOI: 10.1016/j.reth.2019.05.006.
View
12.
Yu S, Yao S, Wen Y, Wang Y, Wang H, Xu Q
. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats. Sci Rep. 2016; 6:33428.
PMC: 5027575.
DOI: 10.1038/srep33428.
View
13.
Mousavi M, Hedayatpour A, Mortezaee K, Mohamadi Y, Abolhassani F, Hassanzadeh G
. Schwann cell transplantation exerts neuroprotective roles in rat model of spinal cord injury by combating inflammasome activation and improving motor recovery and remyelination. Metab Brain Dis. 2019; 34(4):1117-1130.
DOI: 10.1007/s11011-019-00433-0.
View
14.
Rosenzweig E, Brock J, Lu P, Kumamaru H, Salegio E, Kadoya K
. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med. 2018; 24(4):484-490.
PMC: 5922761.
DOI: 10.1038/nm.4502.
View
15.
Zhu H, Poon W, Liu Y, Leung G, Wong Y, Feng Y
. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant. 2016; 25(11):1925-1943.
DOI: 10.3727/096368916X691411.
View
16.
Zhao C, Rao J, Duan H, Hao P, Shang J, Fan Y
. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar. Signal Transduct Target Ther. 2022; 7(1):184.
PMC: 9203793.
DOI: 10.1038/s41392-022-01010-1.
View
17.
Curtis E, Martin J, Gabel B, Sidhu N, Rzesiewicz T, Mandeville R
. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell. 2018; 22(6):941-950.e6.
DOI: 10.1016/j.stem.2018.05.014.
View
18.
Espuny-Camacho I, Michelsen K, Gall D, Linaro D, Hasche A, Bonnefont J
. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron. 2013; 77(3):440-56.
DOI: 10.1016/j.neuron.2012.12.011.
View
19.
Assinck P, Duncan G, Hilton B, Plemel J, Tetzlaff W
. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017; 20(5):637-647.
DOI: 10.1038/nn.4541.
View
20.
Gomez R, Sanchez M, Portela-Lomba M, Ghotme K, Barreto G, Sierra J
. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia. 2018; 66(7):1267-1301.
DOI: 10.1002/glia.23282.
View