» Articles » PMID: 39068154

Guide RNA Structure Design Enables Combinatorial CRISPRa Programs for Biosynthetic Profiling

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Jul 27
PMID 39068154
Authors
Affiliations
Soon will be listed here.
Abstract

Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (r = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.

Citing Articles

Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications.

Roth G, Gengaro I, Qi L Cell Chem Biol. 2024; .

PMID: 39137782 PMC: 11799355. DOI: 10.1016/j.chembiol.2024.07.007.


CRISPR-Cas tools for simultaneous transcription & translation control in bacteria.

Cardiff R, Faulkner I, Beall J, Carothers J, Zalatan J Nucleic Acids Res. 2024; 52(9):5406-5419.

PMID: 38613390 PMC: 11109947. DOI: 10.1093/nar/gkae275.

References
1.
McArthur J, Yu H, Chen X . A Bacterial β1-3-Galactosyltransferase Enables Multigram-Scale Synthesis of Human Milk Lacto--tetraose (LNT) and Its Fucosides. ACS Catal. 2021; 9(12):10721-10726. PMC: 7785058. DOI: 10.1021/acscatal.9b03990. View

2.
Teng Y, Jiang T, Yan Y . The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol. 2023; 42(1):104-118. PMC: 10808275. DOI: 10.1016/j.tibtech.2023.06.012. View

3.
Hartline C, Schmitz A, Han Y, Zhang F . Dynamic control in metabolic engineering: Theories, tools, and applications. Metab Eng. 2020; 63:126-140. PMC: 8015268. DOI: 10.1016/j.ymben.2020.08.015. View

4.
Tickman B, Burbano D, Chavali V, Kiattisewee C, Fontana J, Khakimzhan A . Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Syst. 2021; 13(3):215-229.e8. DOI: 10.1016/j.cels.2021.10.008. View

5.
Wu Y, Li Y, Jin K, Zhang L, Li J, Liu Y . CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization. Nat Chem Biol. 2023; 19(3):367-377. DOI: 10.1038/s41589-022-01230-0. View