6.
Villenave R, Touzelet O, Thavagnanam S, Sarlang S, Parker J, Skibinski G
. Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells. J Virol. 2010; 84(22):11718-28.
PMC: 2977906.
DOI: 10.1128/JVI.00798-10.
View
7.
Ilinykh P, Periasamy S, Huang K, Kuzmina N, Ramanathan P, Meyer M
. A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. NPJ Vaccines. 2022; 7(1):47.
PMC: 9038905.
DOI: 10.1038/s41541-022-00471-3.
View
8.
Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann P, Nakajima N
. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A. 2020; 117(28):16587-16595.
PMC: 7368255.
DOI: 10.1073/pnas.2009799117.
View
9.
Kuhn C, Basnet N, Bodakuntla S, Alvarez-Brecht P, Nichols S, Martinez-Sanchez A
. Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike protein. Nat Commun. 2023; 14(1):620.
PMC: 9898865.
DOI: 10.1038/s41467-023-36279-5.
View
10.
Zainutdinov S, Tikunov A, Matveeva O, Netesov S, Kochneva G
. Complete Genome Sequence of the Oncolytic Sendai virus Strain Moscow. Genome Announc. 2016; 4(4).
PMC: 4982289.
DOI: 10.1128/genomeA.00818-16.
View
11.
Kusudo E, Murata Y, Kawamoto S, Egi M
. Variant-derived SARS-CoV-2 spike protein does not directly cause platelet activation or hypercoagulability. Clin Exp Med. 2023; 23(7):3701-3708.
PMC: 10198021.
DOI: 10.1007/s10238-023-01091-4.
View
12.
Zhang X, Zhang J, Chen S, He Q, Bai Y, Liu J
. Progress and challenges in the clinical evaluation of immune responses to respiratory mucosal vaccines. Expert Rev Vaccines. 2024; 23(1):362-370.
DOI: 10.1080/14760584.2024.2326094.
View
13.
Uaprasert N, Panrong K, Rojnuckarin P, Chiasakul T
. Thromboembolic and hemorrhagic risks after vaccination against SARS-CoV-2: a systematic review and meta-analysis of randomized controlled trials. Thromb J. 2021; 19(1):86.
PMC: 8590131.
DOI: 10.1186/s12959-021-00340-4.
View
14.
Ghildiyal T, Rai N, Rawat J, Singh M, Anand J, Pant G
. Challenges in Emerging Vaccines and Future Promising Candidates against SARS-CoV-2 Variants. J Immunol Res. 2024; 2024:9125398.
PMC: 10834093.
DOI: 10.1155/2024/9125398.
View
15.
Tarres-Freixas F, Trinite B, Pons-Grifols A, Romero-Durana M, Riveira-Munoz E, Avila-Nieto C
. Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice. Front Microbiol. 2022; 13:840757.
PMC: 9114491.
DOI: 10.3389/fmicb.2022.840757.
View
16.
Dolskiy A, Bodnev S, Nazarenko A, Smirnova A, Pyankova O, Matveeva A
. Deletion of BST2 Cytoplasmic and Transmembrane N-Terminal Domains Results in SARS-CoV, SARS-CoV-2, and Influenza Virus Production Suppression in a Vero Cell Line. Front Mol Biosci. 2021; 7:616798.
PMC: 7847895.
DOI: 10.3389/fmolb.2020.616798.
View
17.
Morimoto S, Saeki K, Takeshita M, Hirano K, Shirakawa M, Yamada Y
. Intranasal Sendai virus-based SARS-CoV-2 vaccine using a mouse model. Genes Cells. 2022; 28(1):29-41.
DOI: 10.1111/gtc.12992.
View
18.
Plante J, Liu Y, Liu J, Xia H, Johnson B, Lokugamage K
. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2020; 592(7852):116-121.
PMC: 8158177.
DOI: 10.1038/s41586-020-2895-3.
View
19.
Sun W, Leist S, McCroskery S, Liu Y, Slamanig S, Oliva J
. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine. 2020; 62:103132.
PMC: 7679520.
DOI: 10.1016/j.ebiom.2020.103132.
View
20.
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y
. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther. 2023; 8(1):149.
PMC: 10081433.
DOI: 10.1038/s41392-023-01408-5.
View