6.
Wang G, An Y, Zhang X, Ding P, Bi H, Zhao Z
. Chondrocyte Spheroids Laden in GelMA/HAMA Hybrid Hydrogel for Tissue-Engineered Cartilage with Enhanced Proliferation, Better Phenotype Maintenance, and Natural Morphological Structure. Gels. 2021; 7(4).
PMC: 8701895.
DOI: 10.3390/gels7040247.
View
7.
Seitz A, Galbusera F, Krais C, Ignatius A, Durselen L
. Stress-relaxation response of human menisci under confined compression conditions. J Mech Behav Biomed Mater. 2013; 26:68-80.
DOI: 10.1016/j.jmbbm.2013.05.027.
View
8.
Proctor C, Schmidt M, Whipple R, Kelly M, Mow V
. Material properties of the normal medial bovine meniscus. J Orthop Res. 1989; 7(6):771-82.
DOI: 10.1002/jor.1100070602.
View
9.
Chae S, Lee S, Choi Y, Hong D, Gao G, Wang J
. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials. 2020; 267:120466.
DOI: 10.1016/j.biomaterials.2020.120466.
View
10.
Suo H, Zhang D, Yin J, Qian J, Wu Z, Fu J
. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018; 92:612-620.
DOI: 10.1016/j.msec.2018.07.016.
View
11.
Benton J, DeForest C, Vivekanandan V, Anseth K
. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng Part A. 2009; 15(11):3221-30.
PMC: 2783792.
DOI: 10.1089/ten.TEA.2008.0545.
View
12.
Chen M, Feng Z, Guo W, Yang D, Gao S, Li Y
. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. ACS Appl Mater Interfaces. 2019; 11(44):41626-41639.
DOI: 10.1021/acsami.9b13611.
View
13.
Annabi N, Nichol J, Zhong X, Ji C, Koshy S, Khademhosseini A
. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010; 16(4):371-83.
PMC: 2946907.
DOI: 10.1089/ten.TEB.2009.0639.
View
14.
Serafin A, Murphy C, Rubio M, Collins M
. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021; 122:111927.
DOI: 10.1016/j.msec.2021.111927.
View
15.
Zamboni F, Wong C, Collins M
. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications?. Bioact Mater. 2022; 19:458-473.
PMC: 9079116.
DOI: 10.1016/j.bioactmat.2022.04.023.
View
16.
Valachova K, Svik K, Biro C, Collins M, Jurcik R, Ondruska L
. Impact of Ergothioneine, Hercynine, and Histidine on Oxidative Degradation of Hyaluronan and Wound Healing. Polymers (Basel). 2021; 13(1).
PMC: 7795610.
DOI: 10.3390/polym13010095.
View
17.
Serafin A, Culebras M, Collins M
. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. Int J Biol Macromol. 2023; 233:123438.
DOI: 10.1016/j.ijbiomac.2023.123438.
View
18.
Machado I, Marques C, Martins E, Alves A, Reis R, Silva T
. Marine Gelatin-Methacryloyl-Based Hydrogels as Cell Templates for Cartilage Tissue Engineering. Polymers (Basel). 2023; 15(7).
PMC: 10096504.
DOI: 10.3390/polym15071674.
View
19.
Cook J, Fox D
. A novel bioabsorbable conduit augments healing of avascular meniscal tears in a dog model. Am J Sports Med. 2007; 35(11):1877-87.
DOI: 10.1177/0363546507304330.
View
20.
Pezeshki-Modaress M, Mirzadeh H, Zandi M, Rajabi-Zeleti S, Sodeifi N, Aghdami N
. Gelatin/chondroitin sulfate nanofibrous scaffolds for stimulation of wound healing: In-vitro and in-vivo study. J Biomed Mater Res A. 2016; 105(7):2020-2034.
DOI: 10.1002/jbm.a.35890.
View