6.
Komura H, Watanabe R, Mizuguchi K
. The Trends and Future Prospective of In Silico Models from the Viewpoint of ADME Evaluation in Drug Discovery. Pharmaceutics. 2023; 15(11).
PMC: 10675155.
DOI: 10.3390/pharmaceutics15112619.
View
7.
Carracedo-Reboredo P, Linares-Blanco J, Rodriguez-Fernandez N, Cedron F, Novoa F, Carballal A
. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J. 2021; 19:4538-4558.
PMC: 8387781.
DOI: 10.1016/j.csbj.2021.08.011.
View
8.
Du Toit K, Drewes S, Bodenstein J
. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Nat Prod Res. 2010; 24(5):457-90.
DOI: 10.1080/14786410903335174.
View
9.
Mulholland D, Schwikkard S, Crouch N
. The chemistry and biological activity of the Hyacinthaceae. Nat Prod Rep. 2013; 30(9):1165-210.
DOI: 10.1039/c3np70008a.
View
10.
Schwikkard S, Whitmore H, Sishtla K, Sulaiman R, Shetty T, Basavarajappa H
. The Antiangiogenic Activity of Naturally Occurring and Synthetic Homoisoflavonoids from the Hyacinthaceae ( sensu APGII). J Nat Prod. 2019; 82(5):1227-1239.
PMC: 6771261.
DOI: 10.1021/acs.jnatprod.8b00989.
View
11.
Wright M, Sieber S
. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep. 2016; 33(5):681-708.
PMC: 5063044.
DOI: 10.1039/c6np00001k.
View
12.
Liao L, Song X, Wang L, Lv H, Chen J, Liu D
. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc Natl Acad Sci U S A. 2017; 114(29):E5986-E5994.
PMC: 5530702.
DOI: 10.1073/pnas.1706778114.
View
13.
Arredondo V, Roa D, Gutman E, Huynh N, Van Vranken D
. Total Synthesis of (±)-Brazilin Using [4 + 1] Palladium-Catalyzed Carbenylative Annulation. J Org Chem. 2019; 84(22):14745-14759.
DOI: 10.1021/acs.joc.9b02343.
View
14.
Seo S, Corson T
. Small molecule target identification using photo-affinity chromatography. Methods Enzymol. 2019; 622:347-374.
PMC: 6729133.
DOI: 10.1016/bs.mie.2019.02.028.
View
15.
Basavarajappa H, Sulaiman R, Qi X, Shetty T, Sheik Pran Babu S, Sishtla K
. Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol Med. 2017; 9(6):786-801.
PMC: 5452042.
DOI: 10.15252/emmm.201606561.
View
16.
Wang Y, Wang Y, Che H, Jia Y, Wang H, Zuo L
. Sappanone A: A natural PDE4 inhibitor with dual anti-inflammatory and antioxidant activities from the heartwood of Caesalpinia sappan L. J Ethnopharmacol. 2022; 304:116020.
DOI: 10.1016/j.jep.2022.116020.
View
17.
Li G, Peng X, Guo Y, Gong S, Cao S, Qiu F
. Currently Available Strategies for Target Identification of Bioactive Natural Products. Front Chem. 2021; 9:761609.
PMC: 8515416.
DOI: 10.3389/fchem.2021.761609.
View
18.
Sishtla K, Lambert-Cheatham N, Lee B, Han D, Park J, Sardar Pasha S
. Small-molecule inhibitors of ferrochelatase are antiangiogenic agents. Cell Chem Biol. 2022; 29(6):1010-1023.e14.
PMC: 9233146.
DOI: 10.1016/j.chembiol.2022.01.001.
View
19.
Iqbal M, Hasanah N, Arianto A, Aryati W, Puteri M, Saputri F
. Brazilin from L. as a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor: Pharmacophore-Based Virtual Screening, Molecular Docking, and Studies. Adv Pharmacol Pharm Sci. 2023; 2023:5932315.
PMC: 10584496.
DOI: 10.1155/2023/5932315.
View
20.
Wagner K, Inceoglu B, Hammock B
. Soluble epoxide hydrolase inhibition, epoxygenated fatty acids and nociception. Prostaglandins Other Lipid Mediat. 2011; 96(1-4):76-83.
PMC: 3215909.
DOI: 10.1016/j.prostaglandins.2011.08.001.
View