» Articles » PMID: 39061849

Metabolomics Combined with Physiology and Transcriptomics Reveal the Response of to Key Metabolic Pathways and Its Degradation Mechanism During Subculture

Overview
Date 2024 Jul 27
PMID 39061849
Authors
Affiliations
Soon will be listed here.
Abstract

During the subculture of filamentous fungi, obvious signs of degradation occur which affect the growth and development of the strain, change the content of metabolites, and interfere with gene expression. However, the specific molecular mechanism of filamentous fungi degradation is still unclear. In this study, a filamentous fungus was used as the research object, and it was continuously subcultured. The results showed that when the strain was subcultured to the F8 generation, the strain began to show signs of degradation, which was manifested by affecting the apparent morphology, reducing the growth rate and sporulation, and destroying the antioxidant system. Further transcriptome and metabolomics analyses were performed, and the results showed differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) that were mainly enriched in four metabolic pathways: ABC transporters; fatty acid degradation; alanine, aspartate, and glutamate metabolism; and purine metabolism. Many of the metabolites that were significantly enriched in different pathways may mainly be regulated by genes belonging to proteins and enzymes, such as , , and . At the same time, in the process of subculture, many genes and metabolites that can induce apoptosis and senescence continue to accumulate, causing cell damage and consuming a lot of energy, which ultimately leads to the inhibition of mycelial growth. In summary, this study clarified the response of strains to key metabolic pathways during subculture and some reasons for the degradation of strains.

Citing Articles

Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of .

He M, Wang T, Tang C, Xiao M, Pu X, Qi J J Fungi (Basel). 2025; 11(1).

PMID: 39852470 PMC: 11766798. DOI: 10.3390/jof11010051.

References
1.
Bochman M, Schwacha A . The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev. 2009; 73(4):652-83. PMC: 2786579. DOI: 10.1128/MMBR.00019-09. View

2.
Reinartz A, Ehling J, Leue A, Liedtke C, Schneider U, Kopitz J . Lipid-induced up-regulation of human acyl-CoA synthetase 5 promotes hepatocellular apoptosis. Biochim Biophys Acta. 2010; 1801(9):1025-35. DOI: 10.1016/j.bbalip.2010.04.010. View

3.
Sobota-Grzeszyk A, Kuzmicki M, Szamatowicz J . Myoinositol in the Prevention of Gestational Diabetes Mellitus: Is It Sensible?. J Diabetes Res. 2019; 2019:3915253. PMC: 6925787. DOI: 10.1155/2019/3915253. View

4.
Zhang Y, Zhang Y, Wang J, Yang J, Yang G . Abnormal expression of ABCD3 is an independent prognostic factor for colorectal cancer. Oncol Lett. 2020; 19(5):3567-3577. PMC: 7114719. DOI: 10.3892/ol.2020.11463. View

5.
Wellham P, Hafeez A, Gregori A, Brock M, Kim D, Chandler D . Culture Degeneration Reduces Sex-Related Gene Expression, Alters Metabolite Production and Reduces Insect Pathogenic Response in . Microorganisms. 2021; 9(8). PMC: 8400478. DOI: 10.3390/microorganisms9081559. View