6.
Suresh K, Poornachandra Rao N, Murthy K
. Blue excitable green emitting Ce(3+) doped CaS phosphor for w-LEDs. Luminescence. 2015; 31(1):179-82.
DOI: 10.1002/bio.2942.
View
7.
Liu S, Chen Y, Ruan Z, Lin J, Kong W
. Development of label-free fluorescent biosensor for the detection of kanamycin based on aptamer capped metal-organic framework. Environ Res. 2021; 206:112617.
DOI: 10.1016/j.envres.2021.112617.
View
8.
Wang W, Yin Y, Gunasekaran S
. Oxygen-terminated few-layered TiCT MXene nanosheets as peroxidase-mimic nanozyme for colorimetric detection of kanamycin. Biosens Bioelectron. 2022; 218:114774.
DOI: 10.1016/j.bios.2022.114774.
View
9.
Davydova A, Vorobyeva M
. Aptamer-Based Biosensors for the Colorimetric Detection of Blood Biomarkers: Paving the Way to Clinical Laboratory Testing. Biomedicines. 2022; 10(7).
PMC: 9313021.
DOI: 10.3390/biomedicines10071606.
View
10.
Qian J, Jiang L, Yang X, Yan Y, Mao H, Wang K
. Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst. 2014; 139(21):5587-93.
DOI: 10.1039/c4an01116c.
View
11.
Zhang X, Wang J, Wu Q, Li L, Wang Y, Yang H
. Determination of Kanamycin by High Performance Liquid Chromatography. Molecules. 2019; 24(10).
PMC: 6572613.
DOI: 10.3390/molecules24101902.
View
12.
Gao Y, Li R, Zheng W, Shang X, Wei J, Zhang M
. Broadband NIR photostimulated luminescence nanoprobes based on CaS:Eu,Sm nanocrystals. Chem Sci. 2019; 10(21):5452-5460.
PMC: 6552487.
DOI: 10.1039/c9sc01321k.
View
13.
Li C, Zhang Y, Eremin S, Yakup O, Yao G, Zhang X
. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA. Food Chem. 2017; 227:48-54.
DOI: 10.1016/j.foodchem.2017.01.058.
View
14.
Liang Y, He J, Song Z, Han Y, Qiu Z, Zhou W
. Novel Dual-Excitation and Dual-Emission Materials: Eu,Pb Co-doped Core-Shell-Structured CaS@CaZnOS Phosphors and Their Application for Highly Efficient Photosynthesis of Plants. ACS Appl Mater Interfaces. 2021; 14(1):1413-1422.
DOI: 10.1021/acsami.1c19762.
View
15.
Zeug A, Woehler A, Neher E, Ponimaskin E
. Quantitative intensity-based FRET approaches--a comparative snapshot. Biophys J. 2012; 103(9):1821-7.
PMC: 3491707.
DOI: 10.1016/j.bpj.2012.09.031.
View
16.
Kumar Ghosh S, Pal T
. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev. 2007; 107(11):4797-862.
DOI: 10.1021/cr0680282.
View
17.
Qi X, Zhao Y, Su H, Wang L, Li L, Ma R
. A label-free colorimetric aptasensor based on split aptamers-chitosan oligosaccharide-AuNPs nanocomposites for sensitive and selective detection of kanamycin. Talanta. 2021; 238(Pt 1):123032.
DOI: 10.1016/j.talanta.2021.123032.
View
18.
Katumo N, Li K, Richards B, Howard I
. Dual-color dynamic anti-counterfeiting labels with persistent emission after visible excitation allowing smartphone authentication. Sci Rep. 2022; 12(1):2100.
PMC: 8826933.
DOI: 10.1038/s41598-022-05885-6.
View
19.
Zhou X, Li J, Hu Y, Wu Y, Wang Y, Ning G
. A novel colorimetric assay for sensitive detection of kanamycin based on the aptamer-regulated peroxidase-mimicking activity of CoO nanoparticles. Anal Methods. 2023; 15(20):2441-2447.
DOI: 10.1039/d3ay00304c.
View
20.
Xu R, Cheng Y, Qi X, Li X, Zhang Z, Chen L
. Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin. Anal Chim Acta. 2022; 1230:340377.
DOI: 10.1016/j.aca.2022.340377.
View