» Articles » PMID: 39057998

Anticoccidial and Antioxidant Activities of an Ethanolic Extract of Leaves on -Infected Mice

Overview
Journal Vet Sci
Publisher MDPI
Date 2024 Jul 26
PMID 39057998
Authors
Affiliations
Soon will be listed here.
Abstract

spp. are responsible for the economic loss of both domestic and wild animals due to coccidiosis, the most common parasitic disease. The resistance to currently available drugs used to treat coccidiosis has been proven. Medicinal plants that contain physiologically active phytochemicals have been widely used in traditional medicine. leaf extract (TPLE) has been shown to exhibit pharmacological, antioxidant, and anticoccidial properties in different experiments. Here, our investigation focused on how leaf extract affected the way that caused intestinal injury in mice. Thirty-five male Swiss albino mice were divided into seven groups, as follows: group I: untreated and uninfected (negative control); group II: uninfected, treated group with TPLE (150 mg/kg b.w); and group III: infected untreated (positive control). Groups III-VII were orally administered 10 sporulated oocysts. A total of 60 min after infection, groups IV-VI were treated for five successive days with 50, 150, and 250 mg/kg b.w TPLE, respectively, while group VII was treated with amprolium (120 mg/kg b.w.). The mice had been euthanized on the fifth day post-infection, and the jejunum tissues were prepared for histology and oxidative stress studies. A total of 150 mg/kg of TPLE was the most effective dosage, significantly decreasing oocyst output by about 80.5%, accompanied by a significant reduction in the number of developmental parasitic phases in jejunal sections. In addition, the decrease in the number of goblet cells in the jejuna of mice raised after treatment. Also, TPLE greatly diminished the body weight loss of infected mice. Moreover, our research proved that TPLE reduced oxidative damage due to infection via decreasing intestinal malondialdehyde (MDA) and nitric oxide (NO) levels and increasing reduced superoxide dismutase (SOD) and glutathione (GSH) levels. These results demonstrated that TPLE had potent anticoccidial properties. TPE's efficacy as a natural antioxidant has also been demonstrated in reducing oxidative stress and enhancing antioxidant systems to mitigate biochemical and histological changes in the jejunum caused by .

References
1.
Schito M, Barta J, Chobotar B . Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. J Parasitol. 1996; 82(2):255-62. View

2.
Ljubuncic P, Dakwar S, Portnaya I, Cogan U, Azaizeh H, Bomzon A . Aqueous extracts of Teucrium polium possess remarkable antioxidant activity in vitro. Evid Based Complement Alternat Med. 2006; 3(3):329-38. PMC: 1513151. DOI: 10.1093/ecam/nel028. View

3.
Ellman G . Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82(1):70-7. DOI: 10.1016/0003-9861(59)90090-6. View

4.
Abdel-Latif M, Abdel-Haleem H, Abdel-Baki A . Anticoccidial activities of Chitosan on Eimeria papillata-infected mice. Parasitol Res. 2016; 115(7):2845-52. DOI: 10.1007/s00436-016-5035-0. View

5.
Al-Sayed S, Abdel-Latif M, Abdel-Haleem H, El-Shahawy G, Abdel-Tawab H . Protective efficacy of Eglin C from Hirudo medicinalis against Eimeria papillata-induced coccidiosis. Vet Parasitol. 2022; 314:109869. DOI: 10.1016/j.vetpar.2022.109869. View