6.
Revin V, Pestov N, Shchankin M, Mishkin V, Platonov V, Uglanov D
. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose. Biomacromolecules. 2019; 20(3):1401-1411.
DOI: 10.1021/acs.biomac.8b01816.
View
7.
Revin V, Nazarova N, Tsareva E, Liyaskina E, Revin V, Pestov N
. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Front Bioeng Biotechnol. 2020; 8:603407.
PMC: 7738610.
DOI: 10.3389/fbioe.2020.603407.
View
8.
Watanabe A, Morita S, Ozaki Y
. Temperature-dependent changes in hydrogen bonds in cellulose Ialpha studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Ibeta. Biomacromolecules. 2007; 8(9):2969-75.
DOI: 10.1021/bm700678u.
View
9.
Krystynowicz A, Czaja W, Turkiewicz M, Bielecki S
. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol. 2002; 29(4):189-95.
DOI: 10.1038/sj.jim.7000303.
View
10.
Long L, Weng Y, Wang Y
. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers (Basel). 2019; 10(6).
PMC: 6403747.
DOI: 10.3390/polym10060623.
View
11.
Farah S, Anderson D, Langer R
. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev. 2016; 107:367-392.
DOI: 10.1016/j.addr.2016.06.012.
View
12.
Ross P, Mayer R, Benziman M
. Cellulose biosynthesis and function in bacteria. Microbiol Rev. 1991; 55(1):35-58.
PMC: 372800.
DOI: 10.1128/mr.55.1.35-58.1991.
View
13.
Sai H, Wang M, Miao C, Song Q, Wang Y, Fu R
. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile. Gels. 2021; 7(3).
PMC: 8482140.
DOI: 10.3390/gels7030145.
View
14.
HESTRIN S, Schramm M
. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954; 58(2):345-52.
PMC: 1269899.
DOI: 10.1042/bj0580345.
View
15.
Sai H, Fu R, Xing L, Xiang J, Li Z, Li F
. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation. ACS Appl Mater Interfaces. 2015; 7(13):7373-81.
DOI: 10.1021/acsami.5b00846.
View
16.
Fleury B, Abraham E, De La Cruz J, Chandrasekar V, Senyuk B, Liu Q
. Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes. ACS Appl Mater Interfaces. 2020; 12(30):34115-34121.
DOI: 10.1021/acsami.0c08879.
View
17.
Choi S, Rao K, Zo S, Shin E, Han S
. Bacterial Cellulose and Its Applications. Polymers (Basel). 2022; 14(6).
PMC: 8949969.
DOI: 10.3390/polym14061080.
View
18.
Li H, Ye M, Zhang X, Zhang H, Wang G, Zhang Y
. Hierarchical Porous Iron Metal-Organic Gel/Bacterial Cellulose Aerogel: Ultrafast, Scalable, Room-Temperature Aqueous Synthesis, and Efficient Arsenate Removal. ACS Appl Mater Interfaces. 2021; 13(40):47684-47695.
DOI: 10.1021/acsami.1c14938.
View
19.
Wang J, Tavakoli J, Tang Y
. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydr Polym. 2019; 219:63-76.
DOI: 10.1016/j.carbpol.2019.05.008.
View
20.
Ruan J, Xie K, Wan J, Chen Q, Zuo X, Li X
. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Gels. 2024; 10(2).
PMC: 10888388.
DOI: 10.3390/gels10020141.
View