6.
Midoux P, Pichon C, Yaouanc J, Jaffres P
. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. 2009; 157(2):166-78.
PMC: 2697805.
DOI: 10.1111/j.1476-5381.2009.00288.x.
View
7.
Burke P, Pun S, Reineke T
. Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance. ACS Macro Lett. 2014; 2(10):928-934.
PMC: 3967836.
DOI: 10.1021/mz400418j.
View
8.
Hack F, Cokca C, Stadter S, Hulsmann J, Peneva K, Fischer D
. Indole, Phenyl, and Phenol Groups: The Role of the Comonomer on Gene Delivery in Guanidinium Containing Methacrylamide Terpolymers. Macromol Rapid Commun. 2020; 42(8):e2000580.
DOI: 10.1002/marc.202000580.
View
9.
Richter F, Martin L, Leer K, Moek E, Hausig F, Brendel J
. Tuning of endosomal escape and gene expression by functional groups, molecular weight and transfection medium: a structure-activity relationship study. J Mater Chem B. 2020; 8(23):5026-5041.
DOI: 10.1039/d0tb00340a.
View
10.
Leer K, Reichel L, Kimmig J, Richter F, Hoeppener S, Brendel J
. Optimization of Mixed Micelles Based on Oppositely Charged Block Copolymers by Machine Learning for Application in Gene Delivery. Small. 2023; 20(6):e2306116.
DOI: 10.1002/smll.202306116.
View
11.
Matyjaszewski K, Xia J
. Atom transfer radical polymerization. Chem Rev. 2001; 101(9):2921-90.
DOI: 10.1021/cr940534g.
View
12.
Hooshmand S, Sabet M, Hasanzadeh A, Kamrani Mousavi S, Moghaddam N, Hooshmand S
. Histidine-enhanced gene delivery systems: The state of the art. J Gene Med. 2022; 24(5):e3415.
DOI: 10.1002/jgm.3415.
View
13.
Zu H, Gao D
. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS J. 2021; 23(4):78.
PMC: 8171234.
DOI: 10.1208/s12248-021-00608-7.
View
14.
Mellman I, Fuchs R, Helenius A
. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986; 55:663-700.
DOI: 10.1146/annurev.bi.55.070186.003311.
View
15.
Knop K, Hoogenboom R, Fischer D, Schubert U
. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 2010; 49(36):6288-308.
DOI: 10.1002/anie.200902672.
View
16.
Bellato F, Feola S, Dalla Verde G, Bellio G, Pirazzini M, Salmaso S
. Mannosylated Polycations Target CD206 Antigen-Presenting Cells and Mediate T-Cell-Specific Activation in Cancer Vaccination. Biomacromolecules. 2022; 23(12):5148-5163.
PMC: 9748946.
DOI: 10.1021/acs.biomac.2c00993.
View
17.
Li Y, Yang H, Thambi T, Park J, Lee D
. Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials. 2019; 217:119299.
DOI: 10.1016/j.biomaterials.2019.119299.
View
18.
Leiske M, De Geest B, Hoogenboom R
. Impact of the polymer backbone chemistry on interactions of amino-acid-derived zwitterionic polymers with cells. Bioact Mater. 2023; 24:524-534.
PMC: 9860433.
DOI: 10.1016/j.bioactmat.2023.01.005.
View
19.
Pack D, Hoffman A, Pun S, Stayton P
. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005; 4(7):581-93.
DOI: 10.1038/nrd1775.
View
20.
Xu G, Liu X, Liu P, Pranantyo D, Neoh K, Kang E
. Arginine-Based Polymer Brush Coatings with Hydrolysis-Triggered Switchable Functionalities from Antimicrobial (Cationic) to Antifouling (Zwitterionic). Langmuir. 2017; 33(27):6925-6936.
DOI: 10.1021/acs.langmuir.7b01000.
View