6.
Beltrami C, Finato N, Rocco M, Feruglio G, Puricelli C, Cigola E
. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol. 1995; 27(1):291-305.
DOI: 10.1016/s0022-2828(08)80028-4.
View
7.
Li S, Zhou D, Sirajuddin A, He J, Xu J, Zhuang B
. T1 Mapping and Extracellular Volume Fraction in Dilated Cardiomyopathy: A Prognosis Study. JACC Cardiovasc Imaging. 2021; 15(4):578-590.
DOI: 10.1016/j.jcmg.2021.07.023.
View
8.
Adeli K, Raizman J, Chen Y, Higgins V, Nieuwesteeg M, Abdelhaleem M
. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem. 2015; 61(8):1075-86.
DOI: 10.1373/clinchem.2015.240531.
View
9.
Li S, Zhao L, Ma X, Bai R, Tian J, Selvanayagam J
. Left ventricular fibrosis by extracellular volume fraction and the risk of atrial fibrillation recurrence after catheter ablation. Cardiovasc Diagn Ther. 2020; 9(6):578-585.
PMC: 6987514.
DOI: 10.21037/cdt.2019.12.03.
View
10.
Raucci Jr F, Parra D, Christensen J, Hernandez L, Markham L, Xu M
. Synthetic hematocrit derived from the longitudinal relaxation of blood can lead to clinically significant errors in measurement of extracellular volume fraction in pediatric and young adult patients. J Cardiovasc Magn Reson. 2017; 19(1):58.
PMC: 5541652.
DOI: 10.1186/s12968-017-0377-z.
View
11.
Lu H, Clingman C, Golay X, van Zijl P
. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med. 2004; 52(3):679-82.
DOI: 10.1002/mrm.20178.
View
12.
Messroghli D, Moon J, Ferreira V, Grosse-Wortmann L, He T, Kellman P
. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular.... J Cardiovasc Magn Reson. 2017; 19(1):75.
PMC: 5633041.
DOI: 10.1186/s12968-017-0389-8.
View
13.
Lim E, Le T, Bryant J, Chung Y, Su B, Gan J
. Importance of Sex-Specific Regression Models to Estimate Synthetic Hematocrit and Extracellular Volume Fraction. JACC Cardiovasc Imaging. 2018; 11(9):1366-1367.
DOI: 10.1016/j.jcmg.2017.11.035.
View
14.
Ho C, Abbasi S, Neilan T, Shah R, Chen Y, Heydari B
. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013; 6(3):415-22.
PMC: 3769196.
DOI: 10.1161/CIRCIMAGING.112.000333.
View
15.
Aretz H, Billingham M, Edwards W, Factor S, Fallon J, Fenoglio Jr J
. Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol. 1987; 1(1):3-14.
View
16.
Kim W, Lee H, Ryu H, Chung E, Kim B, Jung H
. Reliability of Point-of-Care Hematocrit Measurement During Liver Transplantation. Anesth Analg. 2017; 125(6):2038-2044.
DOI: 10.1213/ANE.0000000000002109.
View
17.
Chow K, Flewitt J, Green J, Pagano J, Friedrich M, Thompson R
. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med. 2013; 71(6):2082-95.
DOI: 10.1002/mrm.24878.
View
18.
Kawel-Boehm N, Hetzel S, Ambale-Venkatesh B, Captur G, Francois C, Jerosch-Herold M
. Reference ranges ("normal values") for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson. 2020; 22(1):87.
PMC: 7734766.
DOI: 10.1186/s12968-020-00683-3.
View
19.
Su M, Huang Y, Niisato E, Chow K, Juang J, Wu C
. Is a timely assessment of the hematocrit necessary for cardiovascular magnetic resonance-derived extracellular volume measurements?. J Cardiovasc Magn Reson. 2020; 22(1):77.
PMC: 7702722.
DOI: 10.1186/s12968-020-00689-x.
View
20.
Chen C, Dusenbery S, Valente A, Powell A, Geva T
. Myocardial ECV Fraction Assessed by CMR Is Associated With Type of Hemodynamic Load and Arrhythmia in Repaired Tetralogy of Fallot. JACC Cardiovasc Imaging. 2015; 9(1):1-10.
DOI: 10.1016/j.jcmg.2015.09.011.
View