Ex Vivo MFG-E8 Treatment Improves the Function of Lungs Procured from Cardiac Death Donors in Preclinical Porcine Model
Overview
Authors
Affiliations
Ex vivo lung perfusion (EVLP) is a promising technology that allows the re-evaluation of donor lungs and has the potential to improve marginal lung reconditioning. The present study focused on the effects of milk fat globule epidermal growth factor 8 (MFG-E8) on the function of donation after circulatory death (DCD) lungs during EVLP and transplant reperfusion. Domestic swine were assigned to 4 groups. In the control group, the donor lungs lacking warm ischemia were preserved in Perfadex for 4 h. The swine in the other three groups underwent hypoxic arrest, followed by 1 h of warm ischemia. The DCD lungs were procured and randomly divided into three groups: cold static preservation (DCD-CSP) group, DCD-EVLP group, and DCD-MFG-E8 group. The left lung of all groups was transplanted and reperfused. During EVLP and reperfusion, lung functions and pathological evaluations were performed. Treatment with MFG-E8 resulted in significantly improved blood oxygenation. The mean pulmonary artery pressure, peak airway pressure, and expression of IL-1β, IL-6, and IL-12 were significantly lower but IL-10 was higher in the DCD -MFG-E8 group. Furthermore, the lung injury severity score, pulmonary edema, and wet-to-dry weight ratio were also reduced in MFG-E8-treated lungs. However, the pulmonary vascular resistance and expression of TNF-α did not differ from the DCD -EVLP group but were significantly lower than in the DCD -CSP group. Adding MFG-E8 into the perfusate during EVLP obtains optimal graft function of lungs from DCD. This finding, if confirmed clinically, can be applied to recondition grafts and expanded use of DCD lungs.