6.
Chen X, Zhang Y, Mao N, Zhu S, Ji T, Xu W
. Intranasal immunization with coxsackievirus A16 virus-like particles confers protection against lethal infection in neonatal mice. Arch Virol. 2019; 164(12):2975-2984.
DOI: 10.1007/s00705-019-04418-3.
View
7.
Zhang Z, Dong Z, Wang Q, Carr M, Li J, Liu T
. Characterization of an inactivated whole-virus bivalent vaccine that induces balanced protective immunity against coxsackievirus A6 and A10 in mice. Vaccine. 2018; 36(46):7095-7104.
DOI: 10.1016/j.vaccine.2018.09.069.
View
8.
Li J, Zhang Y, Yang Y, Liang Z, Tian Y, Liu B
. Effectiveness of Lanzhou lamb rotavirus vaccine in preventing gastroenteritis among children younger than 5 years of age. Vaccine. 2019; 37(27):3611-3616.
DOI: 10.1016/j.vaccine.2019.03.069.
View
9.
Chackerian B
. Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines. 2007; 6(3):381-90.
DOI: 10.1586/14760584.6.3.381.
View
10.
Liang Q, Li H, Chang X, Zhang H, Hao H, Ye Q
. A phase 3 clinical trial of MINHAI PCV13 in Chinese children aged from 7 months to 5 years old. Vaccine. 2021; 39(47):6947-6955.
DOI: 10.1016/j.vaccine.2021.09.047.
View
11.
Alderson M
. Status of research and development of pediatric vaccines for Streptococcus pneumoniae. Vaccine. 2016; 34(26):2959-2961.
PMC: 4906266.
DOI: 10.1016/j.vaccine.2016.03.107.
View
12.
Southern J, Andrews N, Sandu P, Sheppard C, Waight P, Fry N
. Pneumococcal carriage in children and their household contacts six years after introduction of the 13-valent pneumococcal conjugate vaccine in England. PLoS One. 2018; 13(5):e0195799.
PMC: 5969732.
DOI: 10.1371/journal.pone.0195799.
View
13.
Sadiq A, Bostan N, Yinda K, Naseem S, Sattar S
. Rotavirus: Genetics, pathogenesis and vaccine advances. Rev Med Virol. 2018; 28(6):e2003.
DOI: 10.1002/rmv.2003.
View
14.
Duan X, Zhang C, Wang X, Ren X, Peng H, Tang X
. Molecular epidemiology and clinical features of hand, foot and mouth disease requiring hospitalization after the use of enterovirus A71 inactivated vaccine in chengdu, China, 2017-2022: a descriptive study. Emerg Microbes Infect. 2022; 11(1):2510-2519.
PMC: 9621254.
DOI: 10.1080/22221751.2022.2125346.
View
15.
Carvalho M, Gill D
. Rotavirus vaccine efficacy: current status and areas for improvement. Hum Vaccin Immunother. 2018; 15(6):1237-1250.
PMC: 6663136.
DOI: 10.1080/21645515.2018.1520583.
View
16.
Vesikari T, Matson D, Dennehy P, Van Damme P, Santosham M, Rodriguez Z
. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med. 2006; 354(1):23-33.
DOI: 10.1056/NEJMoa052664.
View
17.
Kim S, Chung D, Song J, Baek J, Thamlikitkul V, Wang H
. Changes in serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from adult patients in Asia: Emergence of drug-resistant non-vaccine serotypes. Vaccine. 2019; 38(38):6065-6073.
DOI: 10.1016/j.vaccine.2019.09.065.
View
18.
Plosker G
. 13-valent pneumococcal conjugate vaccine: a review of its use in infants, children, and adolescents. Paediatr Drugs. 2013; 15(5):403-23.
DOI: 10.1007/s40272-013-0047-z.
View
19.
Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S
. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial. Lancet. 2014; 383(9935):2136-43.
PMC: 4532697.
DOI: 10.1016/S0140-6736(13)62630-6.
View
20.
Baraldo K, Mori E, Bartoloni A, Norelli F, Grandi G, Rappuoli R
. Combined conjugate vaccines: enhanced immunogenicity with the N19 polyepitope as a carrier protein. Infect Immun. 2005; 73(9):5835-41.
PMC: 1231108.
DOI: 10.1128/IAI.73.9.5835-5841.2005.
View