6.
Fajardo-Cavazos P, Langenhorst F, Jay Melosh H, Nicholson W
. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia. Astrobiology. 2009; 9(7):647-57.
DOI: 10.1089/ast.2008.0326.
View
7.
Searles S, Woolley C, Petersen R, Hyman L, Nielsen-Preiss S
. Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in Candida albicans. Astrobiology. 2011; 11(8):825-36.
DOI: 10.1089/ast.2011.0664.
View
8.
Sharma G, Curtis P
. The Impacts of Microgravity on Bacterial Metabolism. Life (Basel). 2022; 12(6).
PMC: 9225508.
DOI: 10.3390/life12060774.
View
9.
Zea L, Larsen M, Estante F, Qvortrup K, Moeller R, de Oliveira S
. Phenotypic Changes Exhibited by Cultured in Space. Front Microbiol. 2017; 8:1598.
PMC: 5581483.
DOI: 10.3389/fmicb.2017.01598.
View
10.
Purevdorj-Gage B, Sheehan K, Hyman L
. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol. 2006; 72(7):4569-75.
PMC: 1489333.
DOI: 10.1128/AEM.03050-05.
View
11.
Huang B, Li D, Huang Y, Liu C
. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res. 2018; 5(1):18.
PMC: 5971428.
DOI: 10.1186/s40779-018-0162-9.
View
12.
Wilson J, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P
. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A. 2002; 99(21):13807-12.
PMC: 129779.
DOI: 10.1073/pnas.212387899.
View
13.
Milojevic T, Weckwerth W
. Molecular Mechanisms of Microbial Survivability in Outer Space: A Systems Biology Approach. Front Microbiol. 2020; 11:923.
PMC: 7242639.
DOI: 10.3389/fmicb.2020.00923.
View
14.
Blachowicz A, Chiang A, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich J
. Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions. Front Microbiol. 2019; 10:1013.
PMC: 6529585.
DOI: 10.3389/fmicb.2019.01013.
View
15.
Kanapskyte A, Hawkins E, Liddell L, Bhardwaj S, Gentry D, Maria S
. Space Biology Research and Biosensor Technologies: Past, Present, and Future. Biosensors (Basel). 2021; 11(2).
PMC: 7912197.
DOI: 10.3390/bios11020038.
View
16.
Fang A, Pierson D, Mishra S, DEMAIN A
. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol. 2000; 54(1):33-6.
DOI: 10.1007/s002539900303.
View
17.
Schultz J, Modolon F, Peixoto R, Rosado A
. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol. 2023; 14:1167718.
PMC: 10272570.
DOI: 10.3389/fmicb.2023.1167718.
View
18.
Garrett-Bakelman F, Darshi M, Green S, Gur R, Lin L, Macias B
. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019; 364(6436).
PMC: 7580864.
DOI: 10.1126/science.aau8650.
View
19.
Mileikowsky C, Cucinotta F, Wilson J, Gladman B, Horneck G, Lindegren L
. Natural transfer of viable microbes in space. Icarus. 2001; 145(2):391-427.
DOI: 10.1006/icar.1999.6317.
View
20.
Bijlani S, Singh N, Eedara V, Podile A, Mason C, Wang C
. sp. nov., Isolated From the International Space Station. Front Microbiol. 2021; 12:639396.
PMC: 8005752.
DOI: 10.3389/fmicb.2021.639396.
View