» Articles » PMID: 39001465

Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2024 Jul 13
PMID 39001465
Authors
Affiliations
Soon will be listed here.
Abstract

The early detection of pancreatic ductal adenocarcinoma (PDAC) is essential for optimal treatment of pancreatic cancer patients. We propose a tumor detection framework to improve the detection of pancreatic head tumors on CT scans. In this retrospective research study, CT images of 99 patients with pancreatic head cancer and 98 control cases from the Catharina Hospital Eindhoven were collected. A multi-stage 3D U-Net-based approach was used for PDAC detection including clinically significant secondary features such as pancreatic duct and common bile duct dilation. The developed algorithm was evaluated using a local test set comprising 59 CT scans. The model was externally validated in 28 pancreatic cancer cases of a publicly available medical decathlon dataset. The tumor detection framework achieved a sensitivity of 0.97 and a specificity of 1.00, with an area under the receiver operating curve (AUROC) of 0.99, in detecting pancreatic head cancer in the local test set. In the external test set, we obtained similar results, with a sensitivity of 1.00. The model provided the tumor location with acceptable accuracy obtaining a DICE Similarity Coefficient (DSC) of 0.37. This study shows that a tumor detection framework utilizing CT scans and secondary signs of pancreatic cancer can detect pancreatic tumors with high accuracy.

Citing Articles

TW-YOLO: An Innovative Blood Cell Detection Model Based on Multi-Scale Feature Fusion.

Zhang D, Bu Y, Chen Q, Cai S, Zhang Y Sensors (Basel). 2024; 24(19).

PMID: 39409208 PMC: 11478786. DOI: 10.3390/s24196168.

References
1.
Elbanna K, Jang H, Kim T . Imaging diagnosis and staging of pancreatic ductal adenocarcinoma: a comprehensive review. Insights Imaging. 2020; 11(1):58. PMC: 7183518. DOI: 10.1186/s13244-020-00861-y. View

2.
Dbouk M, Katona B, Brand R, Chak A, Syngal S, Farrell J . The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. J Clin Oncol. 2022; 40(28):3257-3266. PMC: 9553376. DOI: 10.1200/JCO.22.00298. View

3.
Agarwal B, Correa A, Ho L . Survival in pancreatic carcinoma based on tumor size. Pancreas. 2008; 36(1):e15-20. DOI: 10.1097/mpa.0b013e31814de421. View

4.
Wong J, Raman S . Surgical resectability of pancreatic adenocarcinoma: CTA. Abdom Imaging. 2009; 35(4):471-80. PMC: 2900587. DOI: 10.1007/s00261-009-9539-2. View

5.
Singh D, Sheedy S, Goenka A, Wells M, Lee N, Barlow J . Computerized tomography scan in pre-diagnostic pancreatic ductal adenocarcinoma: Stages of progression and potential benefits of early intervention: A retrospective study. Pancreatology. 2020; 20(7):1495-1501. DOI: 10.1016/j.pan.2020.07.410. View