Supramolecular Self-Assembled Nanostructures Derived from Amplified Structural Isomerism of Zn(II)-Sn(IV)-Zn(II) Porphyrin Triads and Their Visible Light Photocatalytic Degradation of Pollutants
Overview
Authors
Affiliations
Two structural isomeric porphyrin-based triads (Zn(II)porphyrin-Sn(IV)porphyrin-Zn(II)porphyrin) denoted as and were prepared from the reaction of -[5-(4-hydroxyphenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato]zinc(II) () with trans-dihydroxo-[5,10-bis(3-pyridyl)-15,20-bis(phenyl)porphyrinato]tin(IV) () and trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (), respectively. All the compounds were characterized using UV-vis spectroscopy, emission spectroscopy, ESI-MS, H NMR spectroscopy, and FE-SEM. Most importantly, the two structurally isomeric porphyrin-based triads supramolecularly self-assembled into completely different nanostructures. exhibits a nanosphere morphology, whereas exhibits a nanofiber morphology. The amplified geometric feature in the structural isomeric porphyrin-based triads dictates the physical and chemical properties of the two triads. Both compounds showed the morphology-dependent visible light catalytic photodegradation of rhodamine B dye (74-97% within 90 min) and tetracycline antibiotic (44-71% within 45 min) in water. In both cases, the photodegradation efficiency of was higher than that of . The present investigation can significantly contribute to the remediation of wastewater by tuning the conformational changes in porphyrin-based photocatalysts.
Shee N, Kim H Nanomaterials (Basel). 2025; 15(1.
PMID: 39791817 PMC: 11722641. DOI: 10.3390/nano15010059.
Shee N, Kim H Molecules. 2024; 29(17).
PMID: 39275048 PMC: 11539948. DOI: 10.3390/molecules29174200.