6.
Pham B, van Haaften W, Oosterhuis D, Nieken J, de Graaf I, Olinga P
. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis. Physiol Rep. 2015; 3(4).
PMC: 4425951.
DOI: 10.14814/phy2.12323.
View
7.
Pozzer D, Invernizzi R, Blaauw B, Cantoni O, Zito E
. Ascorbic Acid Route to the Endoplasmic Reticulum: Function and Role in Disease. Antioxid Redox Signal. 2019; 34(11):845-855.
DOI: 10.1089/ars.2019.7912.
View
8.
Alfredsson J, Wick M
. Mechanism of fibrosis and stricture formation in Crohn's disease. Scand J Immunol. 2020; 92(6):e12990.
PMC: 7757243.
DOI: 10.1111/sji.12990.
View
9.
van Haaften W, Blokzijl T, Hofker H, Olinga P, Dijkstra G, Bank R
. Intestinal stenosis in Crohn's disease shows a generalized upregulation of genes involved in collagen metabolism and recognition that could serve as novel anti-fibrotic drug targets. Therap Adv Gastroenterol. 2020; 13:1756284820952578.
PMC: 7457685.
DOI: 10.1177/1756284820952578.
View
10.
Leeming D, Larsen D, Zhang C, Hi Y, Veidal S, Nielsen R
. Enzyme-linked immunosorbent serum assays (ELISAs) for rat and human N-terminal pro-peptide of collagen type I (PINP)--assessment of corresponding epitopes. Clin Biochem. 2010; 43(15):1249-56.
DOI: 10.1016/j.clinbiochem.2010.07.025.
View
11.
Chen W, Lu C, Hirota C, Iacucci M, Ghosh S, Gui X
. Smooth Muscle Hyperplasia/Hypertrophy is the Most Prominent Histological Change in Crohn's Fibrostenosing Bowel Strictures: A Semiquantitative Analysis by Using a Novel Histological Grading Scheme. J Crohns Colitis. 2016; 11(1):92-104.
DOI: 10.1093/ecco-jcc/jjw126.
View
12.
Severi C, Sferra R, Scirocco A, Vetuschi A, Pallotta N, Pronio A
. Contribution of intestinal smooth muscle to Crohn's disease fibrogenesis. Eur J Histochem. 2015; 58(4):2457.
PMC: 4289851.
DOI: 10.4081/ejh.2014.2457.
View
13.
di Sabatino A, Jackson C, Pickard K, Buckley M, Rovedatti L, Leakey N
. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn's disease strictures. Gut. 2009; 58(6):777-89.
DOI: 10.1136/gut.2008.149096.
View
14.
Mao R, Doyon G, Gordon I, Li J, Lin S, Wang J
. Activated intestinal muscle cells promote preadipocyte migration: a novel mechanism for creeping fat formation in Crohn's disease. Gut. 2021; 71(1):55-67.
PMC: 8286985.
DOI: 10.1136/gutjnl-2020-323719.
View
15.
Van Haaften W, Mortensen J, Karsdal M, Bay-Jensen A, Dijkstra G, Olinga P
. Misbalance in type III collagen formation/degradation as a novel serological biomarker for penetrating (Montreal B3) Crohn's disease. Aliment Pharmacol Ther. 2017; 46(1):26-39.
PMC: 6221070.
DOI: 10.1111/apt.14092.
View
16.
Afratis N, Selman M, Pardo A, Sagi I
. Emerging insights into the role of matrix metalloproteases as therapeutic targets in fibrosis. Matrix Biol. 2018; 68-69:167-179.
DOI: 10.1016/j.matbio.2018.02.007.
View
17.
di Mola F, Friess H, Scheuren A, Di Sebastiano P, Graber H, Egger B
. Transforming growth factor-betas and their signaling receptors are coexpressed in Crohn's disease. Ann Surg. 1999; 229(1):67-75.
PMC: 1191610.
DOI: 10.1097/00000658-199901000-00009.
View
18.
Li C, Kuemmerle J
. The fate of myofibroblasts during the development of fibrosis in Crohn's disease. J Dig Dis. 2020; 21(6):326-331.
DOI: 10.1111/1751-2980.12852.
View
19.
Ortega M, Rios-Navarro C, Gavara J, de Dios E, Perez-Sole N, Marcos-Garces V
. Meta-Analysis of Extracellular Matrix Dynamics after Myocardial Infarction Using RNA-Sequencing Transcriptomic Database. Int J Mol Sci. 2022; 23(24).
PMC: 9779146.
DOI: 10.3390/ijms232415615.
View
20.
Bourgonje A, Alexdottir M, Otten A, Loveikyte R, Bay-Jensen A, Pehrsson M
. Serological biomarkers of type I, III and IV collagen turnover are associated with the presence and future progression of stricturing and penetrating Crohn's disease. Aliment Pharmacol Ther. 2022; 56(4):675-693.
PMC: 9544881.
DOI: 10.1111/apt.17063.
View