6.
Iizuka O, Kanavati F, Kato K, Rambeau M, Arihiro K, Tsuneki M
. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Sci Rep. 2020; 10(1):1504.
PMC: 6992793.
DOI: 10.1038/s41598-020-58467-9.
View
7.
Li X, Davis R, Xu Y, Wang Z, Souma N, Sotolongo G
. Deep learning segmentation of glomeruli on kidney donor frozen sections. J Med Imaging (Bellingham). 2021; 8(6):067501.
PMC: 8685284.
DOI: 10.1117/1.JMI.8.6.067501.
View
8.
Solez K, Axelsen R, Benediktsson H, Burdick J, Cohen A, Colvin R
. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int. 1993; 44(2):411-22.
DOI: 10.1038/ki.1993.259.
View
9.
Rolak S, Djamali A, Mandelbrot D, Muth B, Jorgenson M, Zhong W
. Outcomes of Delayed Graft Function in Kidney Transplant Recipients Stratified by Histologic Biopsy Findings. Transplant Proc. 2021; 53(5):1462-1469.
DOI: 10.1016/j.transproceed.2021.01.012.
View
10.
Hermsen M, de Bel T, den Boer M, Steenbergen E, Kers J, Florquin S
. Deep Learning-Based Histopathologic Assessment of Kidney Tissue. J Am Soc Nephrol. 2019; 30(10):1968-1979.
PMC: 6779356.
DOI: 10.1681/ASN.2019020144.
View
11.
Kers J, Peters-Sengers H, Heemskerk M, Berger S, Betjes M, van Zuilen A
. Prediction models for delayed graft function: external validation on The Dutch Prospective Renal Transplantation Registry. Nephrol Dial Transplant. 2018; 33(7):1259-1268.
DOI: 10.1093/ndt/gfy019.
View
12.
Li B, Li Y, Eliceiri K
. Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning. Conf Comput Vis Pattern Recognit Workshops. 2022; 2021:14318-14328.
PMC: 8765709.
DOI: 10.1109/CVPR46437.2021.01409.
View
13.
Kers J, Bulow R, Klinkhammer B, Breimer G, Fontana F, Abiola A
. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digit Health. 2021; 4(1):e18-e26.
DOI: 10.1016/S2589-7500(21)00211-9.
View
14.
Yi Z, Salem F, Menon M, Keung K, Xi C, Hultin S
. Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies. Kidney Int. 2021; 101(2):288-298.
PMC: 10285669.
DOI: 10.1016/j.kint.2021.09.028.
View
15.
Remuzzi G, Cravedi P, Perna A, Dimitrov B, Turturro M, Locatelli G
. Long-term outcome of renal transplantation from older donors. N Engl J Med. 2006; 354(4):343-52.
DOI: 10.1056/NEJMoa052891.
View
16.
Yarlagadda S, Coca S, Garg A, Doshi M, Poggio E, Marcus R
. Marked variation in the definition and diagnosis of delayed graft function: a systematic review. Nephrol Dial Transplant. 2008; 23(9):2995-3003.
PMC: 2727302.
DOI: 10.1093/ndt/gfn158.
View
17.
Marsh J, Matlock M, Kudose S, Liu T, Stappenbeck T, Gaut J
. Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections. IEEE Trans Med Imaging. 2018; 37(12):2718-2728.
PMC: 6296264.
DOI: 10.1109/TMI.2018.2851150.
View
18.
Farris A, Adams C, Brousaides N, Della Pelle P, Collins A, Moradi E
. Morphometric and visual evaluation of fibrosis in renal biopsies. J Am Soc Nephrol. 2010; 22(1):176-86.
PMC: 3014046.
DOI: 10.1681/ASN.2009091005.
View
19.
Grimm P, Nickerson P, Gough J, McKenna R, Stern E, Jeffery J
. Computerized image analysis of Sirius Red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J Am Soc Nephrol. 2003; 14(6):1662-8.
DOI: 10.1097/01.asn.0000066143.02832.5e.
View
20.
Pieters T, Falke L, Nguyen T, Verhaar M, Florquin S, Bemelman F
. Histological characteristics of Acute Tubular Injury during Delayed Graft Function predict renal function after renal transplantation. Physiol Rep. 2019; 7(5):e14000.
PMC: 6395310.
DOI: 10.14814/phy2.14000.
View